
Z3Guide: A Scalable, Student-Centered, and Extensible
Educational Environment for Logic Modeling

Ruanqianqian (Lisa) Huang∗
r6huang@ucsd.edu

UC San Diego
La Jolla, CA, USA

Ayana Monroe∗
aam285@cornell.edu
Cornell University
Ithaca, NY, USA

Peli de Halleux
jhalleux@microsoft.com

Microsoft Research
Redmond, WA, USA

Sorin Lerner
lerner@cs.ucsd.edu

UC San Diego
La Jolla, CA, USA

Nikolaj Bjørner
nbjorner@microsoft.com

Microsoft Research
Redmond, WA, USA

ABSTRACT

Constraint-satisfaction problems (CSPs) are ubiquitous, ranging
from budgeting for grocery shopping to verifying software be-
havior. Logic modeling helps solve CSPs programmatically using
SMT solvers. Despite its importance in many Computer Science
disciplines, resources for teaching and learning logic modeling are
scarce and scattered, and challenges remain in designing educa-
tional environments for logic modeling that are accessible and meet
the needs of teachers and students. This paper explores how to
design such an environment and probes the impact of the design
on the learning experience. From a need-finding interview study
and a design iteration with teachers of logic modeling, we curated
10 design guidelines spanning three main requirements: providing
easy access, supporting various educational modalities, and allow-
ing extensions for customized pedagogical needs. We implemented
nine guidelines in Z3Guide, an open-source browser-based tool.
Using Z3Guide in a logic modeling learning workshop with more
than 100 students, we gathered positive feedback on its support for
learning and identified opportunities for future improvements.

CCS CONCEPTS

• Applied computing→ Interactive learning environments;
Computer-assisted instruction; • Human-centered comput-

ing → User centered design.

KEYWORDS

logic modeling, Z3, human-centered design, web environment

1 INTRODUCTION

Constraint-Satisfaction Problems (CSPs) involve finding an opti-
mal solution under prescribed constraints. Most decision making
involves solving a CSP, from budgeting groceries to scheduling
interviews. Logic modeling is an approach to solving CSPs program-
matically, by translating constraints to a set of logical formulas and
using “SatisfiabilityModulo Theories” or SMT solvers to determine
their satisfiability [24, 29].

With advances in SMT solvers like Z3 [20] and their interfaces
to widely-used programming languages such as C++ and Python,
logic modeling is useful in many aspects of Computer Science, from
Artificial Intelligence to Program Verification, and appears as a part
∗Work done while interning at Microsoft Research.

of many standard computing curricula [36]. As such, there is a great
need for accessible and student-centered educational environments
for logic modeling, especially since the COVID-19 pandemic [45].
However, creating an educational environment for logic modeling
that is accessible, meets the needs of various teachers and students,
and provides different learning modalities [23], imposes a design
challenge [19] that prior work has yet to fulfill [2, 9, 10, 13, 43, 51].

Motivated by these concerns, we conducted a design exploration
to identify design guidelines for an educational environment for
logic modeling. We interviewed six university faculty who have
taught logic modeling with Z3 [20], which has been widely used
for logic modeling, to understand user needs and technical require-
ments. We then developed a prototype learning environment, and
iterated on the design with four faculty. The design exploration
surfaced 10 guidelines that suggest three main requirements for
an educational environment for logic modeling: (1) providing easy
access (2) supporting various educational modalities (3) allowing
extensions for customized pedagogical needs.

We implemented nine of the 10 guidelines in Z3Guide, a web-
based tool for logic modeling. Z3Guide has an interactive textbook,
a freeform editor, games, and access to external resources and the Z3
community, supporting both formal education and casual learning.
Z3Guide is 100% client-side—with no server-side computation—and
open-source1, minimizing its maintenance costs, allowing easy ex-
tension, customization, and contribution, and addressing the scala-
bility and maintainability issues in its predecessor RiSE4Fun [1, 13].
With Z3Guide, students can learn the basics of logic modeling and
programming with the Z3 API in various programming languages,
by engaging in the following activities, all directly within a web
browser: (1) interacting with textbook-like tutorials that include
real-world problems and code examples (2) writing larger programs
in a playground (3) solving logic puzzles. Teachers can further use
the tool for in-class demonstrations, supplementary exercises, or
custom extensions for their own pedagogical needs, such as pro-
moting active learning [11].

We used Z3Guide in a three-hour online workshop where more
than 100 participants learned logic modeling with Z3Guide. In a
post-workshop survey (𝑁 = 21), students rated Z3Guide to be easy
to use and found it enjoyable to learn logic modeling and Z3 using
Z3Guide. We reflect on the design guidelines, in combination with

1Maintained at https://github.com/microsoft/z3guide

https://orcid.org/1234-5678-9012
https://github.com/microsoft/z3guide

Huang, et al.

our own usage experience, to inform future educational systems
for logic modeling and beyond.

2 RELATEDWORK

2.1 Background: Logic Modeling and SMTs

A Constraint-Satisfaction Problem (CSP) decides whether a given
set of constraints can be satisfied. Logic modeling solves a CSP
programmatically by formally representing the CSP in a set of
logical formulas and solving it using Satisfiability Modulo Theories.

Satisfiability Modulo Theories or SMT solvers support a formal-
ism based on simply typed first-order logic with built-in theories
for domains used in software. The theories include the theory of
integer and real arithmetic, arithmetic over bit-vectors that corre-
spond to the operations made by assembly code, as well as arrays
and algebraic data types. These theories, along with the first-order
logic, further enable modeling program behavior. As such, SMT
solvers have been established since the early 2000s as a foundation
for symbolic program analysis, verification, and testing.

We show an example of how logicmodeling translates statements
to first-order predicate formulas to be solved by the SMT solvers.
Given the following statements:

All humans are mortal. Socrates is a human.
Therefore Socrates is mortal.

The statements can be encoded as first-order predicate formulas:

((∀𝑥 . human(𝑥) =⇒ mortal(𝑥)) ∧ human(Socrates))
=⇒ mortal(Socrates)

One could further translate the formulas to a format recognized by
SMT solvers (e.g., SMTLIB [14]) for their satisfaction to be checked.

Logic modeling with SMT solvers, grounded on first-order logic,
is distinct from writing algorithmic code in an imperative, func-
tional, or object-oriented programming language. Unlike impera-
tive programs, logical formulas have no notion of side effects. Even
when compared to functional programs, logical formulas cannot
be evaluated. Logic modeling is also distinct from modeling using
linear algebra, which is widely used in operations research and data
science disciplines.

Z3 is a state-of-the-art SMT solver widely used for logic mod-
eling [20]. Z3 supports many theories, reasoning with quantifiers,
and customizing the solving process, enabling logic modeling in
an extensive range of domains used in Formal Methods. Our work
resulted in Z3Guide, an educational environment that assembles
information about the full capability of Z3 starting from an elemen-
tary introduction to more advanced applications.

2.2 Web Tools for Formal Methods Education

Logic modeling is part of the Formal Methods discipline, which
integrates mathematically rigorous techniques for the analysis and
construction of systems [49]. There have been increased interests,
especially since the COVID-19 pandemic [45], in online curricula
and tools that facilitate the education of Formal Methods. Here
we review web-based tools for the education of Formal Methods,
including e-textbooks, programming environments, and tools that
integrate them both.

E-textbooks allow for both guided and self-paced learning. The
Software Foundations series [43] covers a broad range of Formal
Methods topics from programming language theories to separation
logic foundations. SAT/SMT by Example [51] contains real-world
examples of problems solvable by SAT/SMT tools. Sage Tutorial [10]
introduces using Sage, a tool for modeling and solving math prob-
lems, with code examples. These e-textbooks, however, are static,
requiring students to use one or more external environments to
run the embedded code examples. Iltis [25, 26] is interactive, letting
students learn and assess their learning of Logic and Theoretical
Computer Science concepts via multiple-choice and short-response
questions, but it does not have any code examples for applying
the concepts to programming. Finally, for all these e-textbooks, an
important limitation is that there are no effective ways for students
to ask questions about any text sections or examples.

There are also web-based programming environments for the
education of Formal Methods that contain no conceptual tutorial
content. KalkulierbaR [37] provides a series of games that help
practice concepts of logic modeling. DiMO [34] supports using a
SAT solver without installation. Alloy4fun [42] enables writing
programs of Alloy [35], a language for modeling software behavior,
within the browser. SageMathCell [9] runs Sage code from the
web, supplementing the Sage Tutorial [10]. One limitation of all
of the tools above is that they rely on server backends, which
induce costs of tool maintenance and scalability concerns. A bigger
limitation is their detachment from the tutorial materials of the
corresponding languages/tools: while they ease writing programs
in these languages/tools by not requiring software installation,
the user could not learn about these languages/tools within the
environments themselves.

A web-based integrated environment supports both learning
and programming Formal Methods concepts by combining an e-
textbook and a programming environment. Themost noticeable and
closest to our work is RiSE4Fun [13], a web environment for mul-
tiple logic modeling tools. RiSE4Fun combined tutorials for logic
modeling with a playground for each tool. However, RiSE4Fun
shared the same limitation as the e-textbooks [10, 25, 43, 51] that
there was no effective support for students to ask questions about
the tutorial. Also, like the environments above [9, 34, 37, 42],
RiSE4Fun was limited in its implementation: it relied on a server
backend that was vulnerable to attacks and large traffic [13], and
the maintenance costs were high due to its lack of extensibility [1].
For RiSE4Fun, these isues became severe to the point that it was dis-
continued [1]. Our system Z3Guide addresses these limitations by
adding shortcuts for asking tutorial-related questions in its interac-
tive examples, implementing a completely client-side architecture,
and enforcing extensibility.

More importantly, despite the variations of web-based educa-
tional tools for Formal Methods, comparatively few works explore
how to design them to effectively support teaching and learning.
Runge et al. [45] found through two qualitative studies with stu-
dents of Formal Methods that, for these tools to facilitate online
teaching, they must support various educational modalities and be
interactive, accessible, and engaging. Our work reveals more peda-
gogical needs for an educational tool for logic modeling through a
design exploration and a workshop evaluation.

Z3Guide: A Scalable, Student-Centered, and Extensible Educational Environment for Logic Modeling

Table 1: Need-finding study participants. “Teaching Focus” is

themain topic of their classeswhere logicmodeling is taught.

ID Gender Title Main Area of Expertise Teaching Focus

P1 M Assoc. Prof. Compilers Compilers
P2 F Assoc. Prof. Formal Methods Verification
P3 M Prof. Verification Verification
P4 M Prof. Automated Reasoning Verification
P5 F Assoc. Prof. Program Synthesis SAT/SMT
P6 M Asst. Prof. Formal Methods Verification

2.3 Web Tools for Programming Education

Beyond logic modeling and Formal Methods, there is a rich line
of web-based tools that support programming education. Online
interactive textbooks like Stepik [7] and Runestone [22] let stu-
dents learn programming concepts and complete programming
practices in the browser. There are also various programming envi-
ronments covering a broad range of topics. Python Tutor [31] has
allowed millions of users to program, share, and visualize Python
code in the browser, and led to design guidelines [30] for scalable
research software in academia. Inspired by Python Tutor, Pandas
Tutor and Tidy Data Tutor [38] support data science education at
scale. Godbolt [27] allows students learning compilers to compare
compilation outputs from different compilers without any installa-
tion, which is usually platform- and architecture-dependent. CS50
uses GitHub Codespaces [6] to support introductory programming
without local configuration [4]. Finally, integrated environments
like Ed [5] combine digital textbooks, programming experience,
and online discussions. Our work is complementary to these efforts
by focusing on the education of logic modeling and adopting a
human-centered design.

3 DESIGN EXPLORATIONWITH TEACHERS

To derive design guidelines for an educational logic modeling tool,
we conducted a two-stage exploration: a need-finding interview
study with six university faculty (Sec. 3.1), and a design iteration
with four previously interviewed faculty on a prototype we built
based on the interview findings (Sec. 3.2). Both studies were run by
the first two authors via web conferencing, involved no compensa-
tion, and received IRB approval. This section reports the methodol-
ogy of each study. Detailed findings are reported in Sec. 4.

3.1 Need-Finding Interview Study

We recruited participants by emailing faculty with publications and
teaching experience in logic modeling according to their websites.
We required that participants have experience with RiSE4Fun [13],
a deprecated web environment for logic modeling that had been
widely used by teachers. Eventually, six faculty from six institutions
across five countries gave their consent to participate. Table 1 shows
their demographics. We deem the sample size of six participants
reasonable due to the small size of the logic modeling community.

Each participant went through a 60-minute semi-structured in-
terview. We first asked how they taught logic modeling and related
tools. Then, we asked questions from four categories: (1) the inte-
gration of RiSE4Fun into the curriculum (2) failures and successes
of the integration in supporting their and/or the students’ needs (3)
challenges faced teaching logic modeling and Z3 (4) expectations for

a better tool. Each category had a list of questions that interviewers
could ask out of order and follow up on when necessary.

We recorded the audio and video of each interview. The web-
conferencing software transcribed the audio, and the first two au-
thors fixed transcript errors by revisiting the video recordings. We
analyzed the data using thematic analysis [17]. The second author
coded all data, and the first author coded 25% of the data to compute
percentage agreement [48] and establish reliability. Eventually, the
coders agreed upon 88% of the sampled data. The first author then
grouped the codes into themes, which are reported as paragraph
headings in Sec. 4.

3.2 Design Iteration

Based on findings from the interviews, we developed a prototype
similar to our final design (Sec. 5). We re-recruited the interview
participants to evaluate the initial prototype per the iterative nature
of the study. Four participants (P1, P2, P4, P5 in Table 1) agreed to
be in the prototype evaluation.

Each 45-minute evaluation consisted of a 15-minute open-ended
exploration and a 30-minute cognitive walkthrough [41], a com-
monly used technique for evaluating early prototypes. Anyone
experienced in UX research or the corresponding domains could
perform cognitive walkthroughs while revealing usability problems
via realistic use cases. In our study, the participants are experts in
the education of logic modeling: they are familiar with the topic
and the kinds of problems the students could encounter.

During the initial exploration, each participant commented on
things they noticed, asked clarifying questions, and summarized
how they understood the prototype. In the cognitive walkthrough,
they picked one topic in the prototype they would cover (e.g.,
“Logic”) when teaching a related course (e.g., software verification)
and used the tool following an imaginary scenario:

“You were a student in [a specified course] learning logic
modeling and Z3, and you were asked to use the tool as
supplementary reading and exercises. How would you
use it to learn concepts in [the selected section]?”

For each action the participants performed, we asked how they
expected the interface to react, whether the existing designmatched
their expectations, and their ideal design and why.

We recorded the audio, video, and the participant’s screen of
each session, and noted down interactions with the prototype. We
used the same audio transcription approach in Sec. 3.1. Relating to
the findings from Sec. 3.1, the first author used top-down coding to
code the transcripts and notes of interactions. Like in Sec. 3.1, the
first two authors used 25% of the coded data to compute agreement,
which was 87.5%. The authors agreed upon themes emerging from
the codes reported as paragraph headings in Sec. 4.

4 INITIAL DESIGN GUIDELINES

We derived 10 design guidelines (denoted as Ds below) under three
categories for educational tools for logic modeling from the inter-
views and design iterations (Sec. 3).

Providing Easy Access. All participants considered easy access
to the tool—regardless of educational setting and role—a priority,
particularly with regard to programming experience.

Huang, et al.

D1: Fast Execution. In the interview, five participants recalled
unpredictable slowdowns in RiSE4Fun that interrupted lectures.
They remarked that interactive speed is necessary for the tool to
facilitate effective classroom interactions.

During the design iteration, all participants liked the “snappy”
(P4) speed of our prototype most of the time. However, the tool
froze for P2 and P5 at the end of their sessions after several code
executions due to a memory leak bug that we later fixed.
D2: Code Sharing. Four interview participants (P1, P2, P3, P6)
deemed it important to easily share code snippets with others.
With RiSE4Fun, one could share permalinks with others to recreate
the state of the tool and their code. While this feature might not
be essential (due to workarounds like copying/pasting), the four
participants considered it to be useful, as “people send links to each
other all the time [to] teach each other’’ (P1).

Our prototype did not enable direct code sharing or a shortcut
for copying code snippets. However, P2 attempted to copy code
snippets across editors multiple times when using the prototype
with the select-all and copy keyboard shortcuts, and P1 suggested
that students should be able to share/replicate both a code snippet
and its execution state with their classmates or teachers.
D3: Editing Support. In the need-finding interview, P4 and P6
found it necessary to have visual indicators in the code editor and
output display, such as syntax highlighting and visually formatting
long output, which RiSE4Fun lacked. They believed that these fea-
tures would help students catch errors earlier on and understand
the output. Compared to debugging algorithmic code, debugging
logic modeling code has been a hard problem [28, 40], but part of
it could be mitigated with appropriate editor support for getting
the syntax correct and avoid “the [output] given to the students [not
being] straightforward” (P6).

The design iteration further reinforced the necessity of appropri-
ate editing support. Our prototype lacked syntax highlighting and
autocompletion, while Z3 could be written in SMTLIB, a format that
adopts a Lisp-like syntax with a heavy use of parentheses. As such,
every participant made at least one mistake in balancing parenthe-
ses that took a long time to debug during the cognitive walkthrough
due to the lack of IDE support. In addition, P4 further found the
localization of error messages difficult because the editor did not
have line numbers. Finally, all four participants demanded that the
tool support resetting an edited snippet to its original content and
reverting any accidental reset.
Supporting Multi-Modal Education. Participants proposed en-
gaging and supporting students via the tool from five aspects.
D4: Small Examples. Most interview participants requested that
the tool explain logic modeling concepts through small code exam-
ples. Participants believed that by building content with small code
examples, the tool would encourage students to run the examples
and lead to a better understanding of the concepts. In addition,
the small examples might also encourage students to make edits,
“play around, and [re-execute]” (P3), which could deepen their un-
derstanding of the connection between the code and the output.

The design iteration confirmed the benefits of executable and
editable code examples, as all participants tweaked and executed
the examples that came with the prototype while going through
the material. P2 further pointed out that allowing the user to run

each code snippet on the fly could avoid “the hassle of copying and
pasting code examples” into an external editor. She imagined letting
her students “run [each code example] themselves” in class to rein-
force their understanding of the related topics. Finally, participants
suggested having code examples with intentional errors so students
could learn about repairing them.
D5: Freeform and Exploratory Programming. Four interview
participants (P2, P4, P5, P6) wanted “a simple playground where
[students] can try certain things out” (P4) in the tool. P6 deemed
a freeform editor also important for the teacher to quickly demo
some logic modeling code (i.e., live coding [46]) for the students to
follow along and further explore.

Our prototype came with a freeform editor that, compared to
other concept-related interactive examples, was on its own page and
not attached to any concept. In her walkthrough, P5 demonstrated
how a student could use the editor to create logic formulas and solve
an example problem in her course slides. However, the freeform
editor was not editable until after the user ran the sample code
inside, which the participants found confusing and contrary to
its intention for freeform explorations. This design inherited that
of the concept-related examples. While all participants liked this
design for those examples, they suggested that the freeform editor
be always editable to encourage exploratory programming. The free
editor in the prototype was also small, which P1 thought should be
larger to encourage various sizes of exploration.
D6: Gamification. Two interview participants (P1, P3) believed
that games would benefit logic modeling students. P1 particularly
referred to competitions (a form of games) for compiler optimiza-
tion: he would use competitions in his class to encourage students
to write compilation code as optimized as possible, then release the
competitions to the public with rewards for the winner, and people
in the compilers community “love these kinds of competitions.” He
suggested that such competitions could be part of the tool to help
practice concepts and engage students.

Our prototype did not include any games, and P1 reiterated the
importance of having alternative forms of educational materials
beyond readings and exercises in the tool.
D7: References to Basic Concepts in Logic. Logic modeling has a
basic logic prerequisite, but according to the interview participants,
students still occasionally need references to these concepts.

Our prototype lacked such references, to which P4 remarked that
most students at the start of the academic term “[didn’t] remember
anything [. . .] about basic logic” although “everybody had taken [the
prerequisite course]” (P4). This quote exemplifies the need new logic
modeling students often have for a basic logic concepts refresher.
It is thus beneficial to provide basic logic references in the tool.
D8: Question Asking. Four interview participants (P1, P3, P4, P5)
mentioned that students learn through asking questions and obtain-
ing answers [11], but many of them feel uncomfortable asking or
answering questions during class. Asynchronous question-asking
thus became a feature of interest. For example, P1 used Slack [47] in
his class so that students could ask questions and receive help from
the teaching staff and other students asynchronously. The partici-
pants would particularly like the tool to support asking questions
about individual code snippets because most questions involve spe-
cific code examples. Moreover, they saw the potential of native

Z3Guide: A Scalable, Student-Centered, and Extensible Educational Environment for Logic Modeling

question-asking inside the tool for casual learners to receive help
from the entire logic modeling community.

In our prototype, each code example came with a “Discuss” but-
ton that took the user to the GitHub Discussion of the Z3 repository,
which is active with people asking/answering questions about Z3
and logic modeling. The button, which was next to the “Run” button
for each code snippet, received compliments for its functionality
(P2, P5) and complaints about its appearance (P1). P1 suggested a
redesign of the button for it to be noticeable but not distracting.
Allowing for Extensions. Participants hoped for open source in
both the tool and related educational resources.
D9: Resources Sharing. Four interview participants (P1, P2, P3,
P5) said that teachers of logic modeling typically share teaching
resources (e.g., course slides) with one another and reuse existing
ones. However, there was no dedicated space for the sharing of
such resources. Participants saw an opportunity in an educational
tool for logic modeling for “sharing and publishing [these teaching
resources] systematically” (P2) that makes them accessible, credits
their authors, and enables community-driven improvements. The
tool could also serve as a platform for informing users of related
technologies. For example, user propagators are techniques that
allow users to write custom theory extensions for the Z3 solver [16].
P3 and P4 had created user propagators, and they would like the
work built by themselves and others to be available to teachers and
students. In particular, P3 suggested that there could be a centralized
space for Z3 users to access these propagators, whether they are
work-in-progress or ready-to-use.

Our prototype provided links to other Z3- and logic modeling-
related resources in the bottom, which caught the attention of P1
and P2, both of whom found them to be useful.
D10: Tool Extensibility. Three interview participants (P2, P3, P4)
desired the ability for teachers to easily extend the tool for their
pedagogical needs. An extensible tool could allow teachers to use its
technical infrastructure while adding their own content, including
text and code examples. Participants also hoped for integrations
with existing learning platforms for activities such as grading and
assignment generation. Ideally, the tool should enable connections
to these services, e.g., at the source code level.

Although our prototype did not implement extensions facing the
teachers, in the design iteration we mentioned that the tool would
be open source on GitHub for contributions and extensions, about
which all participants were excited.

5 DESIGN OF Z3GUIDE

We designed Z3Guide, a web-based tool for the education of logic
modeling with the Z3 SMT solver [20] that is scalable, student-
centered, and extensible, addressing all design guidelines (Sec. 4)
exceptD2. Sec. 5.1 previews the design via usage scenarios. Sec. 5.2–
Sec. 5.4 each details how we accomplished each of the three cate-
gories of design guidelines reported in Sec. 4.

5.1 Usage Scenarios

We describe two usage scenarios below to demonstrate the function-
ality of Z3Guide. The first scenario is fictional based on contents
in Z3Guide, whereas the second scenario is based on how P5 used
it in the design iteration (Sec. 3.2).

Informal Learning. Sofia is a working professional. Although she
is not in the tech industry, she got her college degree in Applied
Math and knows logic and basic programming. As such, she is
always curious about tools that help solve mathematical problems
programmatically. Recently, she heard about Z3 and logic modeling
from a friend who used it to arrange seats for an event, which
involves dealing with various constraints. She decides to learn
about logic modeling and Z3 in her spare time using Z3Guide.

(1) Sofia presses “SMTLIB Tutorial” (Fig. 1-) to learn the basics of
logic modeling using the Z3 SMT solver in SMTLIB format [15],
a syntax many SMT solvers use, following a textbook-like tu-
torial (Fig. 2). She runs the Z3 code snippets embedded in the
tutorial, sometimes with changes, to understand the concepts.
When she has questions about a snippet, she presses a button
inside the editor to go to the Z3 GitHub discussion page (Fig. 2-

) to look for related discussions on the topic or start a new
discussion thread.

(2) After Sofia acquires the basics of logicmodeling and Z3, thinking
about using Z3 in JavaScript, one of the languages she is most
familiar with, she presses “Programming Z3” (Fig. 1-) to fol-
low tutorials on using Z3 in JavaScript. The tutorials follow the
same structure as the SMTLIB tutorial with editable/executable
code snippets. She finds the “Dogs, cats and mice” example in-
teresting (Fig. 3), so she first runs the example to inspect its
output, and then edits the code to see how the modeling results
will update if she changes the quantity thresholds for cats from
𝑐𝑎𝑡𝑠 >= 1 to 10 <= 𝑐𝑎𝑡𝑠 <= 20 (line 10, Fig. 3); it turns out that
such constraints are unsatisfiable (not shown in figure).

(3) In the same editor, she applies the concepts behind the “Dogs,
cats and mice” problem to budgeting for grocery shopping (not
shown in figure): Given $30 for purchasing toilet papers, fruits,
and snacks, and the constraints that (1) she must buy a pack of
toilet papers, which costs $8.99 (2) she wants to buy some fruits
and some snacks (3) she cannot spend more on snacks than on
fruits (4) she wants to spend all the money, how should she allocate
the money? While writing Z3 JavaScript code for the problem,
she explores using Real as opposed to Int (lines 4-6, Fig. 3) to
encode constraints for budgets, since money does not need to
be integers. Within seconds, the model came back to her with a
solution: spend $10.25 on snacks and $10.75 on fruits.

(4) Sometimes, she wants more programming challenges beyond
constructing logic models. She presses “Playground” (Fig. 1-)
to play formula guessing games (Fig. 4), which let her iterate
on the logic model based on feedback from the modeling tool
to guess the secret model.

(5) Sofia finds the linked materials towards the bottom of the page
(Fig. 1-) useful for her future reference, including slides for
learning advanced topics of logic modeling.

(6) Throughout her usage, she finds materials for a specific concept
with the built-in search feature (Fig. 1-).

Using Z3Guide, Sofia studies logic modeling at her own pace, with
the ability to (1) read, write, edit, and run Z3 code in a variety of
formats, (2) join discussions about materials in Z3Guide, and (3)
access other resources of more advanced concepts related to logic
modeling, all without setting up a local development environment.
Without Z3Guide, she would have needed to rely on web search to

Huang, et al.

Figure 1: The Z3Guide interface: SMTLIB Tutorial (), upon pressing, shows Fig. 2 that includes tutorial content and editable

code examples for logic modeling in SMTLIB format. Programming Z3 (), upon pressing, shows logic modeling with Z3

bindings in JavaScript (Fig. 3) and Python. Playground (), upon pressing, shows logic formula guessing games (Fig. 4) and a

freeform editor (right half of Fig. 5). It also comes with links to external resources () and a built-in search ().

Figure 2: SMTLIB Tutorial in Z3Guide discusses basics of logic modeling with textual explanations, practice problems, and

interactive code examples in SMTLIB [14] (a syntax many SMT solvers including Z3 uses). Each code example is static at

first. The user clicks “Run” to see code output, potentially editing and rerunning the code. Each editor in Z3Guide comes

with three buttons at the upper right corner, from left to right: a copy button for its content, a reset button () that reverts the

content to original, and a discussion button that by default takes the user to the Z3 discussion on GitHub.

look for tutorials, spend hours setting upmultiple local development
environments for different language bindings, and potentially sign
up for workshops or courses to receive more guidance.

Formal Education. Miles is a Professor specializing in Formal
Methods. He is teaching logic modeling for 150 students in the com-
ing school term. This is the second time he has taught the course,
and he has been thinking about possible pedagogical improvement.

Z3Guide: A Scalable, Student-Centered, and Extensible Educational Environment for Logic Modeling

Figure 3: An interactive logic modeling problem solved with

Z3 in JavaScript. The Programming Z3 section of Z3Guide

includes many of such Z3 examples as well as tutorials, intro-

ducing using Z3 in JavaScript or Python. For every interactive

example, if the user presses “Run” to see the output, and then

edits the code, the output area fades to prompt the user to

rerun the code for an up-to-date output.

Figure 4: Playground in Z3Guide contains formula guessing

games. Each game encourages students to create a logicmodel

that matches the secret model behind the game based on the

output, which shows instances that satisfy and/or fail the

user-specified model.

Miles decides to use Z3Guide to make the lectures more interactive

and consolidate course materials. To that end, he adds customized
configuration and content to Z3Guide.2

(1) In the customized Z3Guide, Miles changes the “GitHub Discus-
sion” button inside its editor to direct students to the GitHub
Discussion used by the class, as opposed to the Z3 solver discus-
sion. From there, students could ask the class questions about a
particular code snippet or concept in the tutorial.

(2) When preparing for teaching, he refers to slides made by other
people in the community for inspiration (Fig. 1-).

(3) Miles assigns some sections of the SMTLIB tutorial (Fig. 2) as pre-
class readings and exercises, including some additional examples
he adds on top of the original ones. In each lecture, he discusses
key concepts with the class, and, to encourage participation,
changes parts of the built-in code snippets and asks students to
predict the outcome.

(4) During a lecture, Miles shows on a slide a problem where Santa
Claus needs to make presents given some constraints around
quantity, cost, and time. Miles asks his students to pair up and
model the problem in the freeform editor in Z3Guide (Fig. 5).
All 150 students access Z3Guide all at once. Miles later demon-
strates solving the problem using the same editor himself.

(5) At the end of each lecture, he spends five minutes solving one
formula guessing question (Fig. 4) with the class. His students
love brainstorming solutions with one another.

Miles bases his teaching on a customized Z3Guide, aggregating
all components needed for the class in one platform: readings,
programming environment, and online discussions (GitHub for the
class), while promoting student engagement via group work and
games. Had Miles not used Z3Guide, he would have needed to
use multiple tools for all of his pedagogical needs. In addition, he
might have needed to troubleshoot the programming environment
configuration for his students or even himself. Most importantly,
his customization needs might not have been satisfied without
reimplementing some existing solutions from scratch (and knowing
how to do so in the first place).

5.2 Providing Easy Access

Z3Guide is web-based and completely client-side with no capacity
limit, allowing hundreds of users to use it simultaneously. This is
because the Z3 formulas (in SMTLIB and JavaScript formats3) are
compiled to Web Assembly (WASM) [8] and then executed client
side, without going through any external hosts. As such, users can
access Z3Guide via a URL anytime, from any web browser that
supports WASM, to model Z3 logical formulas and have them run
directly on their machines. The client-side implementation thus
enables D1: Fast Execution: when the user changes an interactive
code block, the code is immediately recomputed in the browser.

Z3Guide also provides D3: Editing Support for programming—
such as syntax highlighting and parentheses autocomplete—and
additional shortcuts for copying code, undo-/redo-ing edits, and
asking for help, in all editors. When the user hovers over an editor,
three buttons appear in the upper right corner (Fig. 2-): (1) a copy
button saves the current content in the editor to the clipboard for

2The customization process is not shown in the figures.
3While Z3Guide includes Z3 examples in Python, they are read-only due to the lack
of client-side compilation support at the time of our implementation.

Huang, et al.

Figure 5: Playground in Z3Guide also includes a freeform editor for Z3 in SMTLIB. Left: An example P5 shared in the design

iteration study. Right: Solving the example problem in the freeform editor. The model output is summarized in orange text.

potential reuse and sharing (partially D2 as Z3Guide does not fully
address this design goal) (2) a reset button resets the editor content
to its original state; in case the user accidentally resets the state, the
reset button () changes to an undo button () for three seconds
to allow the user to undo the reset action and retain their work
(3) a discussion button takes the user to some online discussion
forum (the GitHub Discussion for Z3 by default) in a new tab for
help with content within the guide.

5.3 Supporting Multi-Modal Education

Z3Guide provides a variety of contents. It comes with three main
sections, respectively reached via pressing Fig. 1- to : SMTLIB
Tutorial reviews the basics of logic and contains basic- to advanced-
level topics of logic modeling with interactive examples in SMTLIB;
Programming Z3 introduces more complex Z3 program examples
and API references in JavaScript (executable) and Python (read-
only); Playground includes a freeform editor for the SMTLIB bind-
ing and a series of formula guessing games. In particular, the for-
mula guessing games differ from all other examples throughout
Z3Guide because they “reverse” the logic modeling process: while
logic modeling builds a model given pre-defined constraints, the
formula guessing games require changing the constraints given
concrete instances of modeling successes and failures (Fig. 4) to
build a satisfying model. Such differences aim to promote a deeper
understanding of logic modeling concepts.

With the variety of contents, Z3Guide thus enables several use
cases for the classroom. First, via interactive D4: Small Examples
throughout the tutorials, Z3Guide supports learning-by-doing [12],
enabling students to internalize concepts by editing and running
the examples as they go through the tutorial. Second, with ed-
itable code blocks throughout the tool and a freeform editor in
Playground, Z3Guide not only facilitates students to perform D5:

Freeform and Exploratory Programming but also helps educa-
tors easily live-code [46] in front of the class with the students
following along. This can all be done interactively, directly within
the browser, because of its programming support and client-side
execution (Sec. 5.2). Third, the formula guessing games encour-
age learning via D6: Gamification and allow educators to run
engaging group activities. Fourth, the tutorials can be supplemental
materials for a course to support concept previewing and reviewing
(D7). Lastly, with a button that redirects to some online discus-
sion forum (customizable) in each code example, Z3Guide supports
asynchronous D8: Question Asking during and after class.

Finally, and more importantly, all Z3Guide contents are self-
contained, allowing students to learn the topics at their own pace.

5.4 Allowing for Extensions

Z3Guide achieves D9: Resources Sharing by both providing links
to related Z3 resources (Fig. 1-) and allowing contributions to
its content. Z3Guide is open-source on GitHub (D10).4 All of the
tutorial contents are written in Markdown. As such, anyone can
fork the repository, edit existing Markdown files for the content or
add new ones, and submit a pull request for content contribution.
This allows educators to add their teaching materials to Z3Guide
for sharing with all users of the tool.

Furthermore, anyone can easily extend Z3Guide (D10) as tool
contributions or for their own use. Part of its implementation en-
ables easy extensions (which we detail in Sec. 6): (1) All contents
of Z3Guide are written in Markdown files because Z3Guide uses
docusaurus [3], a static site generator, to compile the Markdown
files to HTML and create its webpage (2) A single JSON file for
configuration of languages specifies editing and execution support
for all interactive code examples. As such, users can add interactive

4https://github.com/microsoft/z3guide

https://github.com/microsoft/z3guide

Z3Guide: A Scalable, Student-Centered, and Extensible Educational Environment for Logic Modeling

code examples for other Z3 bindings or other logic modeling tools
by extending both the content in Markdown and the JSON configu-
ration of languages. For example, if one wants to add interactive
examples for Dafny [39] (another logic modeling tool), they can (1)
create Dafny code blocks in Markdown starting with ```dafny (2)
in the language configuration JSON file, declare a new language
named dafny and configure support for it, such as syntax highlight-
ing, path to the runtime for computing outputs, and destination for
the Discussion button in the editor. To enable these extensions/-
customizations for Z3Guide, users can either contribute directly
to the Z3Guide repository via pull requests or deploy their fork to
their own domains via mechanisms such as GitHub Pages.

6 IMPLEMENTATION CHALLENGES

When implementing Z3Guide, we realized that existing technolo-
gies could not fully address two categories of our design guidelines:
Providing Easy Access and Allowing for Extensions. This sec-
tion describes the technical challenges we resolved to meet the
design guidelines. Solutions to these challenges are not specific to
Z3Guide and can apply to other interactive programming environ-
ments written entirely in Markdown.

6.1 Interactive Code Examples in Markdown

Our design guidelines state that anyone, particularly those who
teach logic modeling, should be able to easily extend Z3Guide (D9-
D10), including (1) writing newZ3 examples that will be rendered as
interactive code snippets and (2) adding examples in other language
bindings for Z3 or other logic modeling tools, with proper syntax
highlighting and runtime for execution. However, all Z3Guide
contents are written in Markdown, which by default renders static
content only, not editable content, and the syntax highlighting for
code blocks in Markdown only supports a limited set of languages.

We contribute three techniques to support the intended use case:
(1) a customized editor (as shown in Fig. 3) that provides proper
syntax highlighting and autocomplete for a Z3 code example, the
buttons for the copy, reset, and discussion actions, an output area
that shows the result of execution, and a “Run” button that trig-
gers computing the output; (2) a Markdown rendering plugin5 that
replaces the default read-only code blocks with interactive code
blocks with our customized editor and computes the outputs of
the code blocks when applicable; (3) a JSON file—configuration
of the languages (denoted as lang-config below)—that specifies
code blocks of which languages should be replaced with the cus-
tomized editor, and additional language-specific information for
the rendering and output computation.

We implemented these techniques for the Z3-SMTLIB and Z3-
JavaScript examples in Z3Guide. Listing 1 shows part of the con-
figuration for the Z3-SMTLIB code blocks in lang-config. Using
lang-config, for each code block in Markdown, the plugin properly
specifies the syntax highlighting (line 4), the process for computing
the code (lines 10-11) during build (Sec. 6.2) or at runtime (asso-
ciated with the “Run” button), the destination for the discussion
button (line 14), etc. for each instance of the customized editor. The
plugin further computes the output of the code (more in Sec. 6.2) if
the buildConfig property is specified (lines 6-13, Listing 1).
5https://github.com/remarkjs/remark

Listing 1: Configuration of Z3-SMTLIB blocks

1 {

2 name: 'Z3', // your language name

3 label: 'z3', // label for markdown code blocks

4 highlight: 'clojure ', // prism -supported syntax highlighting

5 showLineNumbers: true, // whether to show line numbers

6 buildConfig: {

7 timeout: 30000, // execution timeout of each snippet in ms

8 npmPackage: 'z3-solver ',

9 // npm package name for the language runtime, if any

10 processToExecute: './src/remark/run -z3-smtlib.js ',

11 // process for computing code outputs

12 ...

13 },

14 githubRepo: 'Z3Prover/z3', // discussion button destination

15 githubDiscussion: true // whether to show the discussion btn

16 }

Note that while Z3Guide is 100% client-side for Z3, users could
still implement output computation that relies on external servers
when extending Z3Guide with examples in other languages. They
could write a script that handles the client-server communication
and set processToExecute (line 10, Listing 1) to the script.

Because our approach combines Markdown rendering and con-
figuration for specific language support, it is intended to generalize
to other Markdown-based interactive environments. For example,
tutorials for MSAGL6 are built with the framework behind Z3Guide.

6.2 Computing Tutorial Examples

Our design guidelines also state that anyone should be able to easily
access the tool and its interactive code examples (D1-D3). Since
the static site generator used in Z3Guide, docusaurus [3], does not
handle Z3 execution directly, we initially attached a Z3-to-WASM
compiler to Z3Guide to compute Z3 examples client-side when the
user runs the examples. However, larger Z3 examples might still
take long to be computed at runtime, and the user’s computing
environment can affect the client-side computation efficiency. We
deem these large examples essential as they could be important for
learning, but Z3Guide should still deliver an interactive experience
that responds to the user in seconds.

We implemented three approaches to ensure an interactive and
responsive experience with Z3Guide in as many cases as possible.
First, we precompute all code examples in Z3Guide when building
from the source (prior to deployment), including the large examples
that might be slow to compute. Second, we cache the precomputed
outputs by writing each code output to a file on the disk and naming
it with a hash of the code, the language runtime name, and the
runtime version. This way, we avoid unnecessary re-computations
during the build, only recomputing the output of an example if it is
new or the language runtime is updated. Third, we configure the
timeout of the runtime execution (Listing 1) to be 30000milliseconds
(30 seconds): if the user edits a large example and recomputes it at
runtime, the execution will timeout after 30 seconds and prevent
them from waiting too long. Most examples in the tutorial will
not reach this timeout threshold, and if the user encounters an
unexpected execution timeout or wants to get some long example
to be computed, they can ask for help in the discussion.

With this approach, failures in precomputing code examples at
build time will cause the build to fail and thus help contributors
6https://microsoft.github.io/msagljs/

https://microsoft.github.io/msagljs/

Huang, et al.

catch examples with unintentional errors. However, contributors
might want to create examples with intentional errors for edu-
cational purposes. They could skip computing these examples at
the build by adding a no-build flag when creating the Markdown
code blocks (e.g., ```z3 no-build). Our Markdown rendering plugin
(Sec. 6.1) will thus skip the computation of examples with this flag.

7 STUDENTS USING Z3GUIDE

The design of Z3Guide was driven by needs and feedback from the
teachers. To understand how students perceive Z3Guide and gauge
possible improvements for the tool, we conducted a free online
workshop where participants used Z3Guide to learn logic modeling
and Z3. We advertised the workshop through mailing lists of our
institutions and on social media, eventually getting 112 attendees.
We informed them of the workshop agenda and its research purpose
and asked for consent to data collection during registration. Only
21 attendees gave consent, and per our IRB protocol, we only used
their survey responses to report findings.

Participants. We recruited 21 adult participants (4 women, 16 men,
and 1 unknown) from 11 countries and regions. All participants are
novices to logic modeling and Z3: 19 participants had no experience
in logic modeling or Z3, and two participants self-reported minimal
prior experience. Four participants were pursuing a Bachelor’s
degree in Computer Science, while the rest were full-time working
professionals in computing-related fields. All participants joined
the workshop because of interest in the topic and/or using the
technique in their work. Six belonged to the 18-24 age group, and
two were above 60.

Procedure. We conducted the workshop via web conferencing.
The workshop lasted three hours: two 75-minute tutorials with a
15-minute break in between, and 15 minutes at the end for a post-
workshop survey. The first tutorial covered the basics of logic mod-
eling with Z3 in the SMTLIB format following parts of the SMTLIB
Tutorial in Z3Guide (Fig. 2) and the formula guessing games (Fig. 4),
while the second introduced using the Z3 solver API in JavaScript
and Python for solving realistic constraint-satisfaction problems
(e.g., Fig. 3). Only Z3Guide was used in the workshop, with no
other supplementary materials, although participants were free to
search for related content on the internet. All workshop attendees,
including those excluded from the analysis, used Z3Guide simulta-
neously while following the tutorials and programming within the
environment. The last author led the workshop, lecturing and facil-
itating discussions and exercises. Workshop participants interacted
with one another by unmuting themselves in the web conference
or messaging within the chat. Three authors helped moderate the
workshop, including admitting attendees, monitoring the chat, and
troubleshooting Z3Guide when necessary.

Post-Workshop Survey. At the end of the workshop, participants
filled out a survey reflecting on their experience using Z3Guide.
The survey consisted of five Likert-scale rating questions about
the programming experience within Z3Guide, its overall user ex-
perience, and whether participants would recommend the tool to
other similar users; Table 2 summarizes the statements used in
the questions. The survey also included three short response ques-
tions asking the participants about features they liked, disliked,

and wished to be available in Z3Guide. In addition, participants
provided demographic information in the survey.
Data Collection and Analysis. We monitored comments in the
chat related to issues of Z3Guide, though we did not record any.
In addition, we collected post-workshop survey responses, which
included demographics, Likert-scale ratings, and open-ended com-
ments on Z3Guide. The first author coded the comments using
open coding [17]. Using the same approach in Sec. 3.1, the first two
authors computed the inter-coder agreement using 25% of the data
and achieved a 92% agreement.
Limitations. The deployment only evaluated Z3Guide in one
aspect—how it could affect students’ learning experience—while
there are many other aspects of Z3Guide and the design guidelines
behind to be more thoroughly evaluated, such as its impact on learn-
ing outcomes, the teachers’ experience, and the generalizability of
its implementation to other educational tools for logic modeling.
Our evaluation is also limited to its sample size, with only a fifth
of the 112 attendees giving consent to using their post-workshop
survey responses. As such, the deployment should be viewed as
an early step towards understanding the use of Z3Guide and its
design guidelines, future summative assessments, and future tool
designs in related domains.

7.1 Post-Workshop Survey Results

The workshop, with more than 100 people using Z3Guide simulta-
neously, went smoothly with no reported technical issues. Below
we report findings from 21 post-workshop survey responses.
Participants Deemed Z3Guide Easy to Use. On average, par-
ticipants rated 4.43 (𝑠𝑑 = .60) 7 out of 5 (Strongly Agree) to the
statement “Z3Guide was easy to use”. Participants appreciated the
ease of accessing everything used in the workshop within one tool,
from tutorial materials to the programming environment, and that
everything “loaded up instantaneously.” They considered the con-
tent to be “very structured,” the examples to be “clear,” and “there
is a connection between most topics in the tutorial.” They found the
tool to have promising usability “considering students in different
levels.” They also strongly agreed that “programming in Z3Guide
was easy” (4.76 out of 5, 𝑠𝑑 = .54). They believed that it was easy to
create and modify code examples to see “different [Z3] features in
context.” In addition, it is “a great [tool] for playing with Z3,” giving
users “the ability to try out [Z3] without installing [it] locally.”

Participants Found Z3Guide Helpful for Learning. Partic-
ipants gave an average rating of 4.57 out of 5 (𝑠𝑑 = .60) that
“Z3Guide was helpful for learning,” and an average of 4.71 out
of 5 (𝑠𝑑 = .46) that they “would recommend Z3Guide to other
students.” Participants commented that the inclusion and depth of
“a lot of important concepts [about logic]” could “apply to everyone,”
whether or not they intend to use Z3 for logic modeling, which
provide “theoretical reminders all along the way” while learning
new concepts. One participant noted that the tutorials went a bit
too fast for them, but: “now I can read the pages in my own pace,
which is really great.” Programming in Z3Guide was considered
as particularly helpful for learning (𝑎𝑣𝑔. = 4.76, 𝑠𝑑 = .54): seeing
the output of each snippet helped the participants refine “[their]

7𝑠𝑑 - standard deviation.

Z3Guide: A Scalable, Student-Centered, and Extensible Educational Environment for Logic Modeling

Table 2: Likert-scale ratings on Z3Guide in the post-

workshop survey. 1 - “Strongly Disagree”, 5 - “Strongly Agree”.

Avg. - Average, Mdn. - Median, Dist. - Distribution.

Avg. Mdn. Dist.

Z3Guide was easy to use. 4.43 4.0
Programming in Z3Guide was easy. 4.76 5.0
Z3Guide was helpful for learning. 4.57 5.0
Programming in Z3Guide was helpful for learning. 4.76 5.0
Would recommend Z3Guide to other students. 4.71 5.0

understanding of the material and the examples.” Furthermore, par-
ticipants liked the editable examples throughout the guide as they
were “easy to run”, with fast and stable execution, and encouraged
learning-by-doing.
Participants Wanted More Programming Support and En-

gagement. Several participants pointed out issues with the pro-
gramming experience in Z3Guide. One participant, new to Z3, was
frustrated about not being able to “get the syntax right” as the editor
had limited support in autocompleting keywords. Some participants
hoped for more readable, “pretty-printed” modeling output mes-
sages that are usually long in logic modeling. Additionally, some
participants hoped for more learning engagement. One of the high-
lights of Z3Guide is logic puzzles, with one dedicated section of
formula guessing games in its Playground and realistic puzzles like
Sudoku throughout the tutorial. Participants deemed the puzzles
important for an engaging self-paced learning experience of logic
modeling but expected more such “guided modeling problem[s].”
They further yearned for the ability to share their work-in-progress
logic modeling code with others for help, such as “via permalinks,”
rather than having to manually copy and paste the examples.

8 DISCUSSION AND FUTUREWORK

We reflect on our design guidelines (Sec. 8.1) and the last author’s
experience using Z3Guide (Sec. 8.2) to discuss the implications of
our work and future design opportunities.

8.1 Reflections on Design Guidelines

Student feedback from the formative workshop suggested three de-
sign requirements missing in Z3Guide: one wasD2: Code Sharing
that we did not implement, and the other two were possible new
guidelines. Further assessments of D6: Gamification also remain:
while students and teachers showed a positive attitude, prior work
reveals unresolved debates around its impact on student learning.
Sharing of Learning Progress. The post-workshop survey shows
that students hoped to share learning progress, particularly via
permalinks. Indeed, code sharing (D2) is the only design guideline
we did not fully address despite the request of teachers. We did not
implement code sharing in Z3Guide due to security concerns: a
permalink includes complex parameters, such as code to be parsed
and evaluated, which must be done with care to prevent the pos-
sibility of malicious attacks especially when there is JavaScript
execution of user-specified code using eval(), in our case the Z3
code in JavaScript format. In future work, we aim to improve how
JavaScript code is parsed and executed to better support user needs.

Full Programming Support Even in a Lightweight Environ-

ment. In the post-workshop survey, students expected Z3Guide to
incorporate similar programming support to existing IDEs, such as
keyword autocomplete and API discovery. Such expectations might
relate to the fact that most participants were casual learners expe-
rienced in computing, possibly with prior exposure to professional
programming tools. Design tradeoffs remain between enabling a
programming experience with full IDE support and delivering a
lightweight educational environment that covers other experiences
than programming. Our work prioritizes the latter but continues to
seek better editing support in future iterations.
Comprehension Aids for LogicModeling Outputs. Both P4 and
P6 in the design exploration and students in the workshop wanted
better aids for understanding the output of logic modeling. There is
a long line of research in the output representations of algorithmic
programs that facilitate code comprehension. Even if logic mod-
eling differs from algorithmic programming, users share a similar
desire to understand code behavior via some aids. Designing better
representations for logic modeling outputs, however, has been an
open problem [28] and warrants a separate investigation. Future
work could leverage program visualization techniques such as in-
situ visualizations [32, 33] to better connect the non-algorithmic
logic-modeling programs with their outputs.
Understanding of the Impact of Gamification on Student

Learning. Both our design exploration (Sec. 4) and post-workshop
survey reveal a positive attitude towards the educational games in
Z3Guide, while there have been debates on the use of gamification
in education [18, 21]. Future work should evaluate Z3Guide in
formal educational settings, particularly its gamification, to under-
stand its impact on student learning.

8.2 Additional Roles for Interactive Textbooks

From the last author’s year-long experience in using Z3Guide to
answer questions about SMT solvers in an online forum, we identify
two previously under-explored roles beyond an educational envi-
ronment for Z3Guide and similar tools with interactive textbooks.
Z3Guide As A Reference Guide. Z3Guide is very suitable for a
quick reference for logic modeling and Z3 because of its interactive
examples. Indeed, the author has been referring to Z3Guide when
answering user questions and demonstrating Z3 features. To this
end, they added new examples to Z3Guide when there were no
suitable ones or when new Z3 features came out. Such benefits are
not special to Z3Guide or logic modeling; in fact, any extensible
interactive textbooks for programming tools would be suitable for
demonstrating the use and features of the tools.
Z3Guide As A Personalized Tutor. While one can obtain an-
swers to many questions of logic modeling or Z3 by having a human
expert direct them to respective sections in Z3Guide or searching
within Z3Guide themselves, Z3Guide itself cannot answer “how-
to” questions sufficiently. For example, to answer “Is it possible to
dump an SMT2 file after simplifications? If so, how?”, one needs to
(1) break the solution down to steps and (2) connect each step to
sections in Z3Guide. Currently, Z3Guide directly assists with step
(2) via built-in search, but a human expert is necessary for step (1).
Large language models (LLMs) are, on the other hand, very suitable
for automating constructing the how-to solution with decomposed

Huang, et al.

steps [50] and hence reducing the barriers to obtaining answers. We
imagine Z3Guide and similar interactive textbooks, which already
engage students more than static e-textbooks [44], to become even
more active in providing quick answers and feedback to students
with the help of LLMs. Future interactive textbooks could support
learning new concepts and receiving timely feedback on learning
via integration with LLMs.

9 CONCLUSION

To understand the pedagogical needs for educational tools for logic
modeling, we conducted a needfinding interview and a design iter-
ation with teachers of the subject. Driven by 10 design guidelines
from the design exploration, we developed Z3Guide, a scalable,
student-centered, and extensible educational environment for logic
modeling with the Z3 SMT solver. We ran a workshop with more
than 100 students using Z3Guide to learn about logic modeling
with Z3, and a post-workshop survey (𝑁 = 21) shows that students
deemed Z3Guide easy to use and helpful for learning. Our eval-
uation is limited in its formative nature; however, the lessons we
learned from our design process, the workshop, and our year-long
experience using the tool imply several directions for improving
Z3Guide and further evaluations. We hope that our findings can
inform future educational tools and their design guidelines for logic
modeling and programming education.

ACKNOWLEDGMENTS

We thank all our study participants for their invaluable input.

REFERENCES

[1] 2021. rise4fun.com web page is down · Z3Prover/z3 · Discussion #5473. https:
//github.com/Z3Prover/z3/discussions/5473

[2] 2023. Alloy4fun. http://alloy4fun.inesctec.pt
[3] 2023. Build optimized websites quickly, focus on your content: Docusaurus.

https://docusaurus.io/
[4] 2023. CS50. https://cs50.dev/
[5] 2023. Digital Learning Platform. https://edstem.org/
[6] 2023. GitHub Codespaces. https://github.com/features/codespaces
[7] 2023. Stepik is an educational marketplace and online course editor. https:

//stepik.org/
[8] 2023. Web Assembly. https://webassembly.org/
[9] 2024. Online Guide for SAGE. https://doc.sagemath.org/html/en/tutorial
[10] 2024. Sage Tutorial. https://doc.sagemath.org/html/en/tutorial/index.html
[11] Deborah Allen and Kimberly Tanner. 2005. Infusing active learning into the

large-enrollment biology class: seven strategies, from the simple to complex. Cell
biology education 4, 4 (2005), 262–268.

[12] Yuichiro Anzai and Herbert A. Simon. 1979. The theory of learning by doing.
Psychological Review 86, 2 (1979), 124. https://doi.org/10.1037/0033-295X.86.2.124
Publisher: US: American Psychological Association.

[13] Thomas Ball, Peli de Halleux, Nikhil Swamy, and Daan Leijen. 2013. Increasing
Human-Tool Interaction via the Web. In Proceedings of the 11th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (Seat-
tle, Washington) (PASTE ’13). Association for Computing Machinery, New York,
NY, USA, 49–52. https://doi.org/10.1145/2462029.2462031

[14] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. [n. d.]. The Satisfiability
Modulo Theories Library (SMT-LIB). https://www.SMT-LIB.org

[15] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The smt-lib standard:
Version 2.0. In Proceedings of the 8th international workshop on satisfiability
modulo theories (Edinburgh, UK), Vol. 13. 14.

[16] Nikolaj Bjørner, Clemens Eisenhofer, and Laura Kovács. 2023. Satisfiability
Modulo Custom Theories in Z3. In Verification, Model Checking, and Abstract In-
terpretation: 24th International Conference, VMCAI 2023, Boston, MA, USA, January
16–17, 2023, Proceedings. Springer, 91–105.

[17] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in
psychology. Qualitative Research in Psychology 3, 2 (Jan. 2006), 77–101.
https://doi.org/10.1191/1478088706qp063oa Publisher: Routledge _eprint:
https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa.

[18] Ilaria Caponetto, Jeffrey Earp, and Michela Ott. 2014. Gamification and education:
A literature review. In European Conference on Games Based Learning, Vol. 1.
Academic Conferences International Limited, 50.

[19] Jennifer Davis, Matthew Clark, Darren Cofer, Aaron Fifarek, Jacob Hinchman,
Jonathan Hoffman, Brian Hulbert, Steven Miller, Lucas Wagner, and Rockwell
Collins. 2013. Study on the Barriers to the Industrial Adoption of Formal Methods.
Lecture Notes in Computer Science 8187, 63–77. https://doi.org/10.1007/978-3-
642-41010-9_5

[20] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient
SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 4963),
C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337–340. https://doi.org/
10.1007/978-3-540-78800-3_24

[21] Edward L Deci, Richard Koestner, and Richard M Ryan. 1999. A meta-analytic
review of experiments examining the effects of extrinsic rewards on intrinsic
motivation. Psychological bulletin 125, 6 (1999), 627.

[22] Barbara J Ericson and Bradley N Miller. 2020. Runestone: A platform for free, on-
line, and interactive ebooks. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education. 1012–1018.

[23] Göran Folkestad. 2006. Formal and informal learning situations or practices vs
formal and informal ways of learning. British journal of music education 23, 2
(2006), 135–145.

[24] Eugene C Freuder. 1997. In pursuit of the holy grail. Constraints 2 (1997), 57–61.
[25] Gaetano Geck, Artur Ljulin, Sebastian Peter, Jonas Schmidt, Fabian Vehlken, and

Thomas Zeume. 2018. Introduction to Iltis: an interactive, web-based system for
teaching logic. In Proceedings of the 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education (Larnaca, Cyprus) (ITiCSE 2018).
Association for Computing Machinery, New York, NY, USA, 141–146. https:
//doi.org/10.1145/3197091.3197095

[26] Gaetano Geck, Christine Quenkert, Marko Schmellenkamp, Jonas Schmidt, Felix
Tschirbs, Fabian Vehlken, and Thomas Zeume. 2022. Iltis: Learning Logic in the
Web. arXiv:2105.05763 [cs.LO]

[27] Matt Godbolt. 2023. Compiler Explorer. https://godbolt.org/
[28] F. Goualard and F. Benhamou. 1999. A visualization tool for constraint pro-

gram debugging. In 14th IEEE International Conference on Automated Software
Engineering. 110–117. https://doi.org/10.1109/ASE.1999.802142

[29] Jun Gu, Paul W Purdom, John Franco, and Benjamin W Wah. 1996. Algorithms
for the satisfiability (SAT) problem: A survey. Satisfiability problem: Theory and
applications 35 (1996), 19–152.

[30] Philip Guo. 2021. Ten Million Users and Ten Years Later: Python Tutor’s Design
Guidelines for Building Scalable and Sustainable Research Software in Academia.
In The 34th Annual ACM Symposium on User Interface Software and Technology.
ACM, Virtual Event USA, 1235–1251. https://doi.org/10.1145/3472749.3474819

[31] Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. 579–584.

[32] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2018. Augmenting Code
with In Situ Visualizations to Aid Program Understanding. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18).
Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.
org/10.1145/3173574.3174106

[33] Ruanqianqian Lisa Huang, Philip J. Guo, and Sorin Lerner. 2024. UNFOLD:
Enabling Live Programming for Debugging GUI Applications. In 2024 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 306–
316. https://doi.org/10.1109/VL/HCC60511.2024.00041

[34] Norbert Hundeshagen, Martin Lange, and Georg Siebert. 2021. DiMo – Discrete
Modelling Using Propositional Logic. In Theory and Applications of Satisfiability
Testing – SAT 2021, Chu-Min Li and Felip Manyà (Eds.). Springer International
Publishing, Cham, 242–250.

[35] Daniel Jackson. 2019. Alloy: a language and tool for exploring software designs.
Commun. ACM 62, 9 (2019), 66–76.

[36] Association for Computing Machinery (ACM) Joint Task Force on Comput-
ing Curricula and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
Association for Computing Machinery, New York, NY, USA.

[37] Eduard Kamburjan and Lukas Grätz. 2021. Increasing Engagement with Interac-
tive Visualization: Formal Methods as Serious Games. In Formal Methods Teach-
ing, João F. Ferreira, Alexandra Mendes, and Claudio Menghi (Eds.). Springer
International Publishing, Cham, 43–59.

[38] Sam Lau, Sean Kross, Eugene Wu, and Philip J. Guo. 2023. Teaching Data Science
by Visualizing Data Table Transformations: Pandas Tutor for Python, Tidy Data
Tutor for R, and SQL Tutor. In Proceedings of the 2nd International Workshop
on Data Systems Education: Bridging Education Practice with Education Research
(Seattle, WA, USA) (DataEd ’23). Association for Computing Machinery, New
York, NY, USA, 50–55. https://doi.org/10.1145/3596673.3596972

https://github.com/Z3Prover/z3/discussions/5473
https://github.com/Z3Prover/z3/discussions/5473
http://alloy4fun.inesctec.pt
https://docusaurus.io/
https://cs50.dev/
https://edstem.org/
https://github.com/features/codespaces
https://stepik.org/
https://stepik.org/
https://webassembly.org/
https://doc.sagemath.org/html/en/tutorial
https://doc.sagemath.org/html/en/tutorial/index.html
https://doi.org/10.1037/0033-295X.86.2.124
https://doi.org/10.1145/2462029.2462031
https://www.SMT-LIB.org
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3197091.3197095
https://doi.org/10.1145/3197091.3197095
https://arxiv.org/abs/2105.05763
https://godbolt.org/
https://doi.org/10.1109/ASE.1999.802142
https://doi.org/10.1145/3472749.3474819
https://doi.org/10.1145/3173574.3174106
https://doi.org/10.1145/3173574.3174106
https://doi.org/10.1109/VL/HCC60511.2024.00041
https://doi.org/10.1145/3596673.3596972

Z3Guide: A Scalable, Student-Centered, and Extensible Educational Environment for Logic Modeling

[39] K Rustan M Leino. 2010. Dafny: An automatic program verifier for functional cor-
rectness. In International conference on logic for programming artificial intelligence
and reasoning. Springer, 348–370.

[40] Kevin Leo and Guido Tack. 2017. Debugging unsatisfiable constraint models. In
Integration of AI and OR Techniques in Constraint Programming: 14th International
Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings 14. Springer,
77–93.

[41] Clayton Lewis and Cathleen Wharton. 1997. Cognitive walkthroughs. In Hand-
book of human-computer interaction. Elsevier, 717–732.

[42] Nuno Macedo, Alcino Cunha, José Pereira, Renato Carvalho, Ricardo Silva,
Ana C.R. Paiva, Miguel Sozinho Ramalho, and Daniel Silva. 2021. Experiences
on teaching alloy with an automated assessment platform. Science of Computer
Programming 211 (2021), 102690. https://doi.org/10.1016/j.scico.2021.102690

[43] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco
Gaboardi, Michael Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey.
2017. Software Foundations. Electronic textbook. http://www.cis.upenn.edu/
~bcpierce/sf

[44] Kerttu Pollari-Malmi, Julio Guerra, Peter Brusilovsky, Lauri Malmi, and Teemu
Sirkiä. 2017. On the value of using an interactive electronic textbook in an intro-
ductory programming course. In Proceedings of the 17th Koli Calling International

Conference on Computing Education Research. 168–172.
[45] Tobias Runge, Tabea Bordis, Thomas Thüm, and Ina Schaefer. 2021. Teaching

correctness-by-construction and post-hoc verification–the online experience. In
Formal Methods Teaching: 4th International Workshop and Tutorial, FMTea 2021,
Virtual Event, November 21, 2021, Proceedings 4. Springer, 101–116.

[46] Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live
Coding: A Review of the Literature. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1. ACM, Virtual
Event Germany, 164–170. https://doi.org/10.1145/3430665.3456382

[47] Slack. 2023. Slack is your productivity platform. https://slack.com
[48] Moin Syed and Sarah C. Nelson. 2015. Guidelines for Establishing Reliability

When Coding Narrative Data. Emerging Adulthood 3, 6 (Dec. 2015), 375–387.
https://doi.org/10.1177/2167696815587648 Publisher: SAGE Publications Inc.

[49] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. 2009.
Formal methods: Practice and experience. ACM computing surveys (CSUR) 41, 4
(2009), 1–36.

[50] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate Problem Solving
with Large Language Models. arXiv:2305.10601 [cs.CL]

[51] Dennis Yurichev. 2023. SAT/SMT by example. https://sat-smt.codes/

https://doi.org/10.1016/j.scico.2021.102690
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
https://doi.org/10.1145/3430665.3456382
https://slack.com
https://doi.org/10.1177/2167696815587648
https://arxiv.org/abs/2305.10601
https://sat-smt.codes/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Background: Logic Modeling and SMTs
	2.2 Web Tools for Formal Methods Education
	2.3 Web Tools for Programming Education

	3 Design Exploration with Teachers
	3.1 Need-Finding Interview Study
	3.2 Design Iteration

	4 Initial Design Guidelines
	5 Design of Z3Guide
	5.1 Usage Scenarios
	5.2 Providing Easy Access
	5.3 Supporting Multi-Modal Education
	5.4 Allowing for Extensions

	6 Implementation Challenges
	6.1 Interactive Code Examples in Markdown
	6.2 Computing Tutorial Examples

	7 Students Using Z3Guide
	7.1 Post-Workshop Survey Results

	8 Discussion and Future Work
	8.1 Reflections on Design Guidelines
	8.2 Additional Roles for Interactive Textbooks

	9 Conclusion
	Acknowledgments
	References

