Z3GuIDE: A Scalable, Student-Centered, and Extensible
Educational Environment for Logic Modeling

Ruangiangian (Lisa) Huang"
r6huang@ucsd.edu
UC San Diego
La Jolla, CA, USA

Sorin Lerner
lerner@cs.ucsd.edu
UC San Diego
La Jolla, CA, USA

ABSTRACT

Constraint-satisfaction problems (CSPs) are ubiquitous, ranging
from budgeting for grocery shopping to verifying software be-
havior. Logic modeling helps solve CSPs programmatically using
SMT solvers. Despite its importance in many Computer Science
disciplines, resources for teaching and learning logic modeling are
scarce and scattered, and challenges remain in designing educa-
tional environments for logic modeling that are accessible and meet
the needs of teachers and students. This paper explores how to
design such an environment and probes the impact of the design
on the learning experience. From a need-finding interview study
and a design iteration with teachers of logic modeling, we curated
10 design guidelines spanning three main requirements: providing
easy access, supporting various educational modalities, and allow-
ing extensions for customized pedagogical needs. We implemented
nine guidelines in Z3GUIDE, an open-source browser-based tool.
Using Z3GUIDE in a logic modeling learning workshop with more
than 100 students, we gathered positive feedback on its support for
learning and identified opportunities for future improvements.

CCS CONCEPTS

- Applied computing — Interactive learning environments;
Computer-assisted instruction; - Human-centered comput-
ing — User centered design.

KEYWORDS

logic modeling, Z3, human-centered design, web environment

1 INTRODUCTION

Constraint-Satisfaction Problems (CSPs) involve finding an opti-
mal solution under prescribed constraints. Most decision making
involves solving a CSP, from budgeting groceries to scheduling
interviews. Logic modeling is an approach to solving CSPs program-
matically, by translating constraints to a set of logical formulas and
using “Satisfiability Modulo Theories” or SMT solvers to determine
their satisfiability [24, 29].

With advances in SMT solvers like Z3 [20] and their interfaces
to widely-used programming languages such as C++ and Python,
logic modeling is useful in many aspects of Computer Science, from
Artificial Intelligence to Program Verification, and appears as a part

“Work done while interning at Microsoft Research.

Ayana Monroe"
aam285@cornell.edu
Cornell University
Ithaca, NY, USA

Peli de Halleux
jhalleux@microsoft.com
Microsoft Research
Redmond, WA, USA

Nikolaj Bjerner
nbjorner@microsoft.com
Microsoft Research
Redmond, WA, USA

of many standard computing curricula [36]. As such, there is a great
need for accessible and student-centered educational environments
for logic modeling, especially since the COVID-19 pandemic [45].
However, creating an educational environment for logic modeling
that is accessible, meets the needs of various teachers and students,
and provides different learning modalities [23], imposes a design
challenge [19] that prior work has yet to fulfill [2, 9, 10, 13, 43, 51].

Motivated by these concerns, we conducted a design exploration
to identify design guidelines for an educational environment for
logic modeling. We interviewed six university faculty who have
taught logic modeling with Z3 [20], which has been widely used
for logic modeling, to understand user needs and technical require-
ments. We then developed a prototype learning environment, and
iterated on the design with four faculty. The design exploration
surfaced 10 guidelines that suggest three main requirements for
an educational environment for logic modeling: (1) providing easy
access (2) supporting various educational modalities (3) allowing
extensions for customized pedagogical needs.

We implemented nine of the 10 guidelines in Z3GUIDE, a web-
based tool for logic modeling. Z3GUIDE has an interactive textbook,
a freeform editor, games, and access to external resources and the Z3
community, supporting both formal education and casual learning.
Z3GUIDE is 100% client-side—with no server-side computation—and
open-source!, minimizing its maintenance costs, allowing easy ex-
tension, customization, and contribution, and addressing the scala-
bility and maintainability issues in its predecessor RiSE4Fun [1, 13].
With Z3GUIDE, students can learn the basics of logic modeling and
programming with the Z3 API in various programming languages,
by engaging in the following activities, all directly within a web
browser: (1) interacting with textbook-like tutorials that include
real-world problems and code examples (2) writing larger programs
in a playground (3) solving logic puzzles. Teachers can further use
the tool for in-class demonstrations, supplementary exercises, or
custom extensions for their own pedagogical needs, such as pro-
moting active learning [11].

We used Z3GUIDE in a three-hour online workshop where more
than 100 participants learned logic modeling with Z3GUIDE. In a
post-workshop survey (N = 21), students rated Z3GUIDE to be easy
to use and found it enjoyable to learn logic modeling and Z3 using
Z3GuIDE. We reflect on the design guidelines, in combination with

!Maintained at https://github.com/microsoft/z3guide


https://orcid.org/1234-5678-9012
https://github.com/microsoft/z3guide

our own usage experience, to inform future educational systems
for logic modeling and beyond.

2 RELATED WORK

2.1 Background: Logic Modeling and SMTs

A Constraint-Satisfaction Problem (CSP) decides whether a given
set of constraints can be satis ed. Logic modeling solves a CSP
programmatically by formally representing the CSP in a set of
logical formulas and solving it using Satis ability Modulo Theories.
Satis ability Modulo Theories or SMT solvers support a formal-
ism based on simply typed rst-order logic with built-in theories
for domains used in software. The theories include the theory of
integer and real arithmetic, arithmetic over bit-vectors that corre-

Huang, et al.

E-textbooks allow for both guided and self-paced learning. The
Software Foundations serie43 covers a broad range of Formal
Methods topics from programming language theories to separation
logic foundations. SAT/SMT by Exampl&]] contains real-world
examples of problems solvable by SAT/SMT tools. Sage Tutdrihl [
introduces using Sage, a tool for modeling and solving math prob-
lems, with code examples. These e-textbooks, howeversiatic
requiring students to use one or more external environments to
run the embedded code examples. [It&5[2§ is interactive letting
students learn and assess their learning of Logic and Theoretical
Computer Science concepts via multiple-choice and short-response
questions, but it does not have any code examples for applying
the concepts to programming. Finally, for all these e-textbooks, an
important limitation is that there are no e ective ways for students

spond to the operations made by assembly code, as well as arraysto ask questions about any text sections or examples.

and algebraic data types. These theories, along with the rst-order
logic, further enable modeling program behavior. As such, SMT

There are also web-based programming environments for the
education of Formal Methods that contain no conceptual tutorial

solvers have been established since the early 2000s as a foundationcontent. KalkulierbaR37 provides a series of games that help

for symbolic program analysis, veri cation, and testing.

We show an example of how logic modeling translates statements
to rst-order predicate formulas to be solved by the SMT solvers.
Given the following statements:

All humans are mortal. Socrates is a human.
Therefore Socrates is mortal.

The statements can be encoded as rst-order predicate formulas:

mortal!G° A humartSocrate®$
S

One could further translate the formulas to a format recognized by
SMT solvers (e.g., SMTLIR4) for their satisfaction to be checked.

Logic modeling with SMT solvers, grounded on rst-order logic,
is distinct from writing algorithmiccode in an imperative, func-
tional, or object-oriented programming language. Unlike impera-
tive programs, logical formulas have no notion of side e ects. Even
when compared to functional programs, logical formulas cannot
be evaluated. Logic modeling is also distinct from modeling using
linear algebra, which is widely used in operations research and data
science disciplines.

Z3 is a state-of-the-art SMT solver widely used for logic mod-
eling [20. Z3 supports many theories, reasoning with quanti ers,
and customizing the solving process, enabling logic modeling in
an extensive range of domains used in Formal Methods. Our work
resulted inZ3Guide, an educational environment that assembles
information about the full capability of Z3 starting from an elemen-
tary introduction to more advanced applications.

118G 'humart@ =)
mortal*Socrates

2.2 Web Tools for Formal Methods Education

Logic modeling is part of the Formal Methods discipline, which
integrates mathematically rigorous techniques for the analysis and
construction of systems49. There have been increased interests,
especially since the COVID-19 pandemdd], in online curricula
and tools that facilitate the education of Formal Methods. Here
we review web-based tools for the education of Formal Methods,
including e-textbooks, programming environments, and tools that
integrate them both.

practice concepts of logic modeling. DiM@4] supports using a
SAT solver without installation. Alloy4fun 42 enables writing
programs of Alloy B5, a language for modeling software behavior,
within the browser. SageMathCelB[ runs Sage code from the
web, supplementing the Sage Tutoridl(. One limitation of all

of the tools above is that they rely on server backends, which
induce costs of tool maintenance and scalability concerns. A bigger
limitation is their detachment from the tutorial materials of the
corresponding languages/tools: while they ease writing programs
in these languages/tools by not requiring software installation,
the user could not learn about these languages/tools within the
environments themselves.

A web-basedntegrated environmergupports both learning
and programming Formal Methods concepts by combining an e-
textbook and a programming environment. The most noticeable and
closest to our work iRiISE4Furj13, a web environment for mul-
tiple logic modeling toolsRiSE4Furcombined tutorials for logic
modeling with a playground for each tool. HoweveRiSE4Fun
shared the same limitation as the e-textbool€9[25 43 51] that
there was no e ective support for students to ask questions about
the tutorial. Also, like the environments aboved,[34, 37, 47,
RiSE4Furwas limited in its implementation: it relied on a server
backend that was vulnerable to attacks and large tra ¢§, and
the maintenance costs were high due to its lack of extensibility; [
ForRiSE4Funthese isues became severe to the point that it was dis-
continued [1]. Our systemZ3Guide addresses these limitations by
adding shortcuts for asking tutorial-related questions in its interac-
tive examples, implementing a completely client-side architecture,
and enforcing extensibility.

More importantly, despite the variations of web-based educa-
tional tools for Formal Methods, comparatively few works explore
how to design them to e ectively support teaching and learning.
Runge et al[45] found through two qualitative studies with stu-
dents of Formal Methods that, for these tools to facilitate online
teaching, they must support various educational modalities and be
interactive, accessible, and engaging. Our work reveals more peda-
gogical needs for an educational tool for logic modeling through a
design exploration and a workshop evaluation.



Z3Guide A Scalable, Student-Centered, and Extensible Educational Environment for Logic Modeling

Table 1: Need- nding study participants. Teaching Focus is
the main topic of their classes where logic modeling is taught.

ID Gender Title Main Area of Expertise Teaching Focus
P1 M Assoc. Prof. Compilers Compilers

P2 F Assoc. Prof. Formal Methods Veri cation

P3 M Prof. Veri cation Veri cation

P4 M Prof. Automated Reasoning Veri cation

P5 F Assoc. Prof. Program Synthesis SAT/SMT

P6 M Asst. Prof. Formal Methods Veri cation

2.3 Web Tools for Programming Education

Beyond logic modeling and Formal Methods, there is a rich line
of web-based tools that support programming education. Online
interactive textbooks like Stepik7 and Runestone? let stu-
dents learn programming concepts and complete programming
practices in the browser. There are also various programming envi-
ronments covering a broad range of topics. Python Tut8d][has
allowed millions of users to program, share, and visualize Python
code in the browser, and led to design guidelin@§][for scalable
research software in academia. Inspired by Python Tutor, Pandas
Tutor and Tidy Data Tutor B§ support data science education at
scale. Godbolt7] allows students learning compilers to compare
compilation outputs from di erent compilers without any installa-
tion, which is usually platform- and architecture-dependent. CS50
uses GitHub Codespace§] fo support introductory programming
without local con guration [4]. Finally, integrated environments
like Ed [5] combine digital textbooks, programming experience,
and online discussions. Our work is complementary to these e orts
by focusing on the education of logic modeling and adopting a
human-centered design.

3 DESIGN EXPLORATION WITH TEACHERS

To derive design guidelines for an educational logic modeling tool,
we conducted a two-stage exploration: a need- nding interview
study with six university faculty (Sec. 3.1), and a design iteration
with four previously interviewed faculty on a prototype we built
based on the interview ndings (Sec. 3.2). Both studies were run by
the rst two authors via web conferencing, involved no compensa-
tion, and received IRB approval. This section reports the methodol-
ogy of each study. Detailed ndings are reported in Sec. 4.

3.1 Need-Finding Interview Study

We recruited participants by emailing faculty with publications and
teaching experience in logic modeling according to their websites.
We required that participants have experience witiSE4Fur13,
a deprecated web environment for logic modeling that had been
widely used by teachers. Eventually, six faculty from six institutions
across ve countries gave their consent to participate. Table 1 shows
their demographics. We deem the sample size of six participants
reasonable due to the small size of the logic modeling community.
Each participant went through a 60-minute semi-structured in-
terview. We rst asked how they taught logic modeling and related
tools. Then, we asked questions from four categories: (1) the inte-
gration of RiSE4Furinto the curriculum (2) failures and successes
of the integration in supporting their and/or the students' needs (3)
challenges faced teaching logic modeling and Z3 (4) expectations for

a better tool. Each category had a list of questions that interviewers
could ask out of order and follow up on when necessary.

We recorded the audio and video of each interview. The web-
conferencing software transcribed the audio, and the rst two au-
thors xed transcript errors by revisiting the video recordings. We
analyzed the data using thematic analysis7. The second author
coded all data, and the rstauthor coded 25% of the data to compute
percentage agreemend§ and establish reliability. Eventually, the
coders agreed upon 88% of the sampled data. The rst author then
grouped the codes into themes, which are reported as paragraph
headings in Sec. 4.

3.2 Design Iteration

Based on ndings from the interviews, we developed a prototype
similar to our nal design (Sec. 5). We re-recruited the interview
participants to evaluate the initial prototype per the iterative nature
of the study. Four participants (P1, P2, P4, P5 in Table 1) agreed to
be in the prototype evaluation.

Each 45-minute evaluation consisted of a 15-minute open-ended
exploration and a 30-minute cognitive walkthrougi4]], a com-
monly used technique for evaluating early prototypes. Anyone
experienced in UX research or the corresponding domains could
perform cognitive walkthroughs while revealing usability problems
via realistic use cases. In our study, the participants are experts in
the education of logic modeling: they are familiar with the topic
and the kinds of problems the students could encounter.

During the initial exploration, each participant commented on
things they noticed, asked clarifying questions, and summarized
how they understood the prototype. In the cognitive walkthrough,
they picked one topic in the prototype they would cover (e.g.,
Logic ) when teaching a related course.g, software veri cation)
and used the tool following an imaginary scenario:

You were a student in [a speci ed course] learning logic
modeling and Z3, and you were asked to use the tool as
supplementary reading and exercises. How would you
use it to learn concepts in [the selected section]?

For each action the participants performed, we asked how they
expected the interface to react, whether the existing design matched
their expectations, and their ideal design and why.

We recorded the audio, video, and the participant's screen of
each session, and noted down interactions with the prototype. We
used the same audio transcription approach in Sec. 3.1. Relating to
the ndings from Sec. 3.1, the rst author used top-down coding to
code the transcripts and notes of interactions. Like in Sec. 3.1, the
rst two authors used 25% of the coded data to compute agreement,
which was 87.5%. The authors agreed upon themes emerging from
the codes reported as paragraph headings in Sec. 4.

4 INITIAL DESIGN GUIDELINES

We derived 10 design guidelines (denotedsbelow) under three
categories for educational tools for logic modeling from the inter-
views and design iterations (Sec. 3).

Providing Easy Access. All participants considered easy access
to the tool regardless of educational setting and role a priority,
particularly with regard to programming experience.



D1: Fast Execution. In the interview, ve participants recalled
unpredictable slowdowns ifRRiSE4Furthat interrupted lectures.
They remarked thatnteractive speeid necessary for the tool to
facilitate e ective classroom interactions.

During the design iteration, all participants liked thenappy
(P4) speed of our prototype most of the time. However, the tool
froze for P2 and P5 at the end of their sessions after several code
executions due to a memory leak bug that we later xed.

D2: Code Sharing. Four interview participants (P1, P2, P3, P6)
deemed it important to easily share code snippets with others.
With RiSE4Funone could share permalinks with others to recreate
the state of the tool and their code. While this feature might not
be essential (due to workarounds like copying/pasting), the four
participants considered it to be useful, geople send links to each
other all the time [to] teach each otH€P1).

Our prototype did not enable direct code sharing or a shortcut
for copying code snippets. However, P2 attempted to copy code
shippets across editors multiple times when using the prototype
with the select-all and copy keyboard shortcuts, and P1 suggested
that students should be able to share/replicate both a code snippet
and its execution state with their classmates or teachers.

D3: Editing Support . In the need- nding interview, P4 and P6
found it necessary to have visual indicators in the code editor and
output display, such as syntax highlighting and visually formatting
long output, whichRiSE4Funacked. They believed that these fea-
tures would help students catch errors earlier on and understand
the output. Compared to debugging algorithmic code, debugging
logic modeling code has been a hard proble®8 [4(, but part of

it could be mitigated with appropriate editor support for getting
the syntax correct and avoidhe [output] given to the students [not
being] straightforward (P6).

The design iteration further reinforced the necessity of appropri-
ate editing support. Our prototype lacked syntax highlighting and
autocompletion, while Z3 could be written in SMTLIB, a format that
adopts a Lisp-like syntax with a heavy use of parentheses. As such,
every participant made at least one mistake in balancing parenthe-
ses that took a long time to debug during the cognitive walkthrough
due to the lack of IDE support. In addition, P4 further found the
localization of error messages di cult because the editor did not
have line numbers. Finally, all four participants demanded that the
tool support resetting an edited snippet to its original content and
reverting any accidental reset.

Supporting Multi-Modal Education . Participants proposed en-
gaging and supporting students via the tool from ve aspects.

D4: Small Examples. Most interview participants requested that
the tool explain logic modeling concepts through small code exam-
ples. Participants believed that by building content with small code
examples, the tool would encourage students to run the examples
and lead to a better understanding of the concepts. In addition,
the small examples might also encourage students to make edits,
play around, and [re-execute]P3), which could deepen their un-
derstanding of the connection between the code and the output.
The design iteration con rmed the bene ts of executable and

Huang, et al.

each code snippet on the y could avoithe hassle of copying and
pasting code exampleiato an external editor. She imagined letting
her studentsrun [each code example] themsehiesclass to rein-
force their understanding of the related topics. Finally, participants
suggested having code examples with intentional errors so students
could learn about repairing them.

D5: Freeform and Exploratory Programming . Four interview
participants (P2, P4, P5, P6) wantadsimple playground where
[students] can try certain things oufP4) in the tool. P6 deemed
a freeform editor also important for the teacher to quickly demo
some logic modeling code (i.dive coding 46) for the students to
follow along and further explore.

Our prototype came with a freeform editor that, compared to
other concept-related interactive examples, was on its own page and
not attached to any concept. In her walkthrough, P5 demonstrated
how a student could use the editor to create logic formulas and solve
an example problem in her course slides. However, the freeform
editor was not editable until after the user ran the sample code
inside, which the participants found confusing and contrary to
its intention for freeform explorations. This design inherited that
of the concept-related examples. While all participants liked this
design for those examples, they suggested that the freeform editor
be always editable to encourage exploratory programming. The free
editor in the prototype was also small, which P1 thought should be
larger to encourage various sizes of exploration.

D6: Gami cation . Two interview participants (P1, P3) believed
that games would bene t logic modeling students. P1 particularly
referred to competitions (a form of games) for compiler optimiza-
tion: he would use competitions in his class to encourage students
to write compilation code as optimized as possible, then release the
competitions to the public with rewards for the winner, and people
in the compilers communitylove these kinds of competitionide
suggested that such competitions could be part of the tool to help
practice concepts and engage students.

Our prototype did not include any games, and P1 reiterated the
importance of having alternative forms of educational materials
beyond readings and exercises in the tool.

D7: References to Basic Concepts in LogicLogic modeling has a
basic logic prerequisite, but according to the interview participants,
students still occasionally need references to these concepts.

Our prototype lacked such references, to which P4 remarked that
most students at the start of the academic terjaidn't] remember
anything [...] about basic logi@lthough everybody had taken [the
prerequisite course{P4). This quote exempli es the need new logic
modeling students often have for a basic logic concepts refresher.
It is thus bene cial to provide basic logic references in the tool.

D8: Question Asking. Four interview participants (P1, P3, P4, P5)
mentioned that students learn through asking questions and obtain-
ing answers 1], but many of them feel uncomfortable asking or
answering questions during class. Asynchronous question-asking
thus became a feature of interest. For example, P1 used HAatin[

his class so that students could ask questions and receive help from
the teaching sta and other students asynchronously. The partici-

editable code examples, as all participants tweaked and executed pants would particularly like the tool to support asking questions

the examples that came with the prototype while going through
the material. P2 further pointed out that allowing the user to run

about individual code snippets because most questions involve spe-
ci c code examples. Moreover, they saw the potential of native



Z3Guide A Scalable, Student-Centered, and Extensible Educational Environment for Logic Modeling

question-asking inside the tool for casual learners to receive help
from the entire logic modeling community.

In our prototype, each code example came with a Discuss but-
ton that took the user to the GitHub Discussion of the Z3 repository,
which is active with people asking/answering questions about Z3
and logic modeling. The button, which was nextto the Run button
for each code snippet, received compliments for its functionality

Informal Learning . So a is a working professional. Although she

is not in the tech industry, she got her college degree in Applied
Math and knows logic and basic programming. As such, she is
always curious about tools that help solve mathematical problems
programmatically. Recently, she heard about Z3 and logic modeling
from a friend who used it to arrange seats for an event, which
involves dealing with various constraints. She decides to learn

(P2, P5) and complaints about its appearance (P1). P1 suggested about logic modeling and Z3 in her spare time usid§Guide.

redesign of the button for it to be noticeable but not distracting.
Allowing for Extensions . Participants hoped for open source in
both the tool and related educational resources.

D9: Resources Sharing Four interview participants (P1, P2, P3,
P5) said that teachers of logic modeling typically share teaching

resources (e.g., course slides) with one another and reuse existing
ones. However, there was no dedicated space for the sharing of

such resources. Participants saw an opportunity in an educational
tool for logic modeling for sharing and publishing [these teaching

(1) So apresses SMTLIB Tutorial (Fig. 1-) to learn the basics of

logic modeling using the Z3 SMT solver in SMTLIB formaf],
a syntax many SMT solvers use, following a textbook-like tu-
torial (Fig. 2). She runs the Z3 code snippets embedded in the
tutorial, sometimes with changes, to understand the concepts.
When she has questions about a snippet, she presses a button
inside the editor to go to the Z3 GitHub discussion page (Fig. 2-
) to look for related discussions on the topic or start a new
discussion thread.

resources] systematicallfP2) that makes them accessible, credits (2) After So a acquires the basics of logic modeling and Z3, thinking

their authors, and enables community-driven improvements. The
tool could also serve as a platform for informing users of related

technologies. For example, user propagators are techniques that

allow users to write custom theory extensions for the Z3 solva].

P3 and P4 had created user propagators, and they would like the

work built by themselves and others to be available to teachers and

students. In particular, P3 suggested that there could be a centralized
space for Z3 users to access these propagators, whether they are

work-in-progress or ready-to-use.
Our prototype provided links to other Z3- and logic modeling-

related resources in the bottom, which caught the attention of P1 (3)

and P2, both of whom found them to be useful.
D10: Tool Extensibility . Three interview participants (P2, P3, P4)

about using Z3 in JavaScript, one of the languages she is most
familiar with, she presses Programming Z3 (Fig. 1) to fol-

low tutorials on using Z3 in JavaScript. The tutorials follow the
same structure as the SMTLIB tutorial with editable/executable
code snippets. She nds the Dogs, cats and mice example in-
teresting (Fig. 3), so she rst runs the example to inspect its
output, and then edits the code to see how the modeling results
will update if she changes the quantity thresholds for cats from
20CB= 1to 10Y= 20CE= 20(line 10, Fig. 3); it turns out that
such constraints are unsatis able (not shown in gure).

In the same editor, she applies the concepts behind the Dogs,
cats and mice problem to budgeting for grocery shopping (not
shown in gure): Given $30 for purchasing toilet papers, fruits,

and snacks, and the constraints that (1) she must buy a pack of
toilet papers, which costs $8.99 (2) she wants to buy some fruits
and some snacks (3) she cannot spend more on snacks than on
fruits (4) she wants to spend all the money, how should she allocate
the moneyMhile writing Z3 JavaScript code for the problem,
she explores usin@eal as opposed tint (lines 4-6, Fig. 3) to
encode constraints for budgets, since money does not need to
Although our prototype did not implement extensions facing the be integers. Within seconds, the model came back to her with a

teachers, in the design iteration we mentioned that the tool would solution: spend $10.25 on snacks and $10.75 on fruits.
be open source on GitHub for contributions and extensions, about (4) Sometimes, she wants more programming challenges beyond
which all participants were excited. constructing logic models. She presses Playground (Fig. -

to play formula guessing games (Fig. 4), which let her iterate

on the logic model based on feedback from the modeling tool

to guess the secret model.
(5) So a nds the linked materials towards the bottom of the page

centered, and extensible, addressing all design guidelines (Sec. 4)  (Fig. 1- ) useful for her future reference, including slides for
exceptD2. Sec. 5.1 previews the design via usage scenarios. Sec. 5.2 learning advanced topics of logic mod_ellng. _

Sec. 5.4 each details how we accomplished each of the three cate(6) Throughout her usage, she nds materials for a speci ¢ concept
gories of design guidelines reported in Sec. 4. with the built-in search feature (Fig. 1-).

desired the ability for teachers to easily extend the tool for their
pedagogical needs. An extensible tool could allow teachers to use its
technical infrastructure while adding their own content, including
text and code examples. Participants also hoped for integrations
with existing learning platforms for activities such as grading and
assignment generation. Ideally, the tool should enable connections
to these services, e.g., at the source code level.

5 DESIGN OFZ3GUIDE

We designed3Guide, a web-based tool for the education of logic
modeling with the Z3 SMT solverZq that is scalable, student-

. UsingZ3Guide, So a studies logic modeling at her own pace, with
5.1 Usage Scenarios the ability to (1) read, write, edit, and run Z3 code in a variety of
We describe two usage scenarios below to demonstrate the function- formats, (2) join discussions about materialsA8Guide, and (3)
ality of Z3Guide The rst scenario is ctional based on contents  access other resources of more advanced concepts related to logic
in Z3Guide, whereas the second scenario is based on how P5 used modeling, all without setting up a local development environment.
it in the design iteration (Sec. 3.2). Without Z3Guide, she would have needed to rely on web search to



Huang, et al.

Figure 1: The Z3Guide interface: SMTLIB Tutorial (), upon pressing, shows Fig. 2 that includes tutorial content and editable
code examples for logic modeling in SMTLIB format. Programming Z3 ( ), upon pressing, shows logic modeling with Z3
bindings in JavaScript (Fig. 3) and Python. Playground (), upon pressing, shows logic formula guessing games (Fig. 4) and a
freeform editor (right half of Fig. 5). It also comes with links to external resources ( ) and a built-in search ().

Figure 2: SMTLIB Tutorial in Z3Guide discusses basics of logic modeling with textual explanations, practice problems, and

interactive code examples in SMTLIB [ 14] (a syntax many SMT solvers including Z3 uses). Each code example is static at
rst. The user clicks Run to see code output, potentially editing and rerunning the code. Each editor in Z3Guide comes
with three buttons at the upper right corner, from left to right: a copy button for its content, a reset button ( ) that reverts the

content to original, and a discussion button that by default takes the user to the Z3 discussion on GitHub.

look for tutorials, spend hours setting up multiple local development  Formal Education . Miles is a Professor specializing in Formal

environments for di erent language bindings, and potentially sign  Methods. He is teaching logic modeling for 150 students in the com-

up for workshops or courses to receive more guidance. ing school term. This is the second time he has taught the course,
and he has been thinking about possible pedagogical improvement.



Z3Guide A Scalable, Student-Centered, and Extensible Educational Environment for Logic Modeling

Figure 3: An interactive logic modeling problem solved with
Z3in JavaScript. The Programming Z3 section of Z3Guide
includes many of such Z3 examples as well as tutorials, intro-
ducing using Z3 in JavaScript or Python. For every interactive
example, if the user presses Run to see the output, and then
edits the code, the output area fades to prompt the user to
rerun the code for an up-to-date output.

Figure 4: Playground in Z3Guide contains formula guessing
games. Each game encourages students to create a logic model
that matches the secret model behind the game based on the
output, which shows instances that satisfy and/or fail the
user-speci ed model.

Miles decides to us&3Guideto make the lectures more interactive

and consolidate course materials. To that end, he adds customized
con guration and content toZ3Guide?

(1) In the customizedZ3Guide, Miles changes the GitHub Discus-
sion button inside its editor to direct students to the GitHub
Discussion used by the class, as opposed to the Z3 solver discus-
sion. From there, students could ask the class questions about a
particular code snippet or concept in the tutorial.

(2) When preparing for teaching, he refers to slides made by other
people in the community for inspiration (Fig. 1-).

(3) Miles assigns some sections of the SMTLIB tutorial (Fig. 2) as pre-
class readings and exercises, including some additional examples
he adds on top of the original ones. In each lecture, he discusses
key concepts with the class, and, to encourage participation,
changes parts of the built-in code snippets and asks students to
predict the outcome.

(4) During a lecture, Miles shows on a slide a problem where Santa
Claus needs to make presents given some constraints around
guantity, cost, and time. Miles asks his students to pair up and
model the problem in the freeform editor id3Guide (Fig. 5).

All 150 students accez3Guideall at once. Miles later demon-
strates solving the problem using the same editor himself.

(5) At the end of each lecture, he spends ve minutes solving one
formula guessing question (Fig. 4) with the class. His students
love brainstorming solutions with one another.

Miles bases his teaching on a customiz28iGuide, aggregating

all components needed for the class in one platform: readings,
programming environment, and online discussions (GitHub for the
class), while promoting student engagement via group work and
games. Had Miles not used3Guide, he would have needed to
use multiple tools for all of his pedagogical needs. In addition, he
might have needed to troubleshoot the programming environment
con guration for his students or even himself. Most importantly,
his customization needs might not have been satis ed without
reimplementing some existing solutions from scratch (and knowing
how to do so in the rst place).

5.2 Providing Easy Access

Z3Guideis web-based and completely client-side with no capacity
limit, allowing hundreds of users to use it simultaneously. This is
because the Z3 formulas (in SMTLIB and JavaScript forfaie
compiled to Web Assembly (WASMg][and then executed client
side, without going through any external hosts. As such, users can
acces¥Z3Guide via a URL anytime, from any web browser that
supports WASM, to model Z3 logical formulas and have them run
directly on their machines. The client-side implementation thus
enableD1: Fast Execution: when the user changes an interactive
code block, the code is immediately recomputed in the browser.
Z3Guidealso provided3: Editing Support for programming
such as syntax highlighting and parentheses autocomplete and
additional shortcuts for copying code, undo-/redo-ing edits, and
asking for help, in all editors. When the user hovers over an editor,
three buttons appear in the upper right corner (Fig. 2): (1) acopy
button saves the current content in the editor to the clipboard for

2The customization process is not shown in the gures.
Swhile Z3Guideincludes Z3 examples in Python, they are read-only due to the lack
of client-side compilation support at the time of our implementation.






	Abstract
	1 Introduction
	2 Related Work
	2.1 Background: Logic Modeling and SMTs
	2.2 Web Tools for Formal Methods Education
	2.3 Web Tools for Programming Education

	3 Design Exploration with Teachers
	3.1 Need-Finding Interview Study
	3.2 Design Iteration

	4 Initial Design Guidelines
	5 Design of Z3Guide
	5.1 Usage Scenarios
	5.2 Providing Easy Access
	5.3 Supporting Multi-Modal Education
	5.4 Allowing for Extensions

	6 Implementation Challenges
	6.1 Interactive Code Examples in Markdown
	6.2 Computing Tutorial Examples

	7 Students Using Z3Guide
	7.1 Post-Workshop Survey Results

	8 Discussion and Future Work
	8.1 Reflections on Design Guidelines
	8.2 Additional Roles for Interactive Textbooks

	9 Conclusion
	Acknowledgments
	References

