
PLATEAU
13th Annual Workshop at the
Intersection of PL and HCI

DOI: 10.35699/1983-
3652.yyyy.nnnnn

Organizers:
Sarah Chasins, Elena
Glassman, and Joshua
Sunshine

This work is licensed under a
Creative Commons
Attribution 4.0 International
License.

How do Haskell programmers debug?
Ruanqianqian (Lisa) Huang , Elizaveta Pertseva , Michael
Coblenz and Sorin Lerner

University of California San Diego, La Jolla, CA

Abstract
Functional programming is a paradigm that emphasizes avoiding shared mutable state. Compared to imper-
ative programming, which focuses more on how the runtime state should be updated to perform a computa-
tion, functional programming adopts a more declarative syntax that highlights what the computation should
achieve without involving mutable state. Since functional programming differs from imperative programming,
programmers might adopt different debugging strategies in functional programming. However, how program-
mers debug in functional languages remains under-explored. As an initial step, we interviewed four expert
functional programmers to gain insight into how they debug in Haskell, a popular functional programming
language. Our preliminary findings show that while debugging strategies for Haskell are similar to strategies
for other languages, some features of Haskell and functional programming introduce challenges to using these
debugging strategies. Informed by the findings, we call for future work that gains more understanding of how
debugging is done in Haskell and functional programming in general, and explores design opportunities for
usable debugging aids in this domain.

Keywords: Functional programming. Debugging. Haskell.

1 Introduction
Functional programming emphasizes avoiding shared mutable state. Therefore, it frees programmers
from worrying about state changes [1]. Hughes further argued that functional programming leads to
well-structured programs and delivers benefits to constructing large, complex software [2].

Functional programming is different from imperative programming, which calls for code that
specifies mutations in runtime state. Because of the difference, one might wonder whether debugging
in functional programming requires different strategies than debugging in imperative programming.
However, while there has been a fruitful line of research in how debugging is performed with imperative
languages [3]–[6] and how programmers interact with debugging aids [6]–[10], little about debugging
is known in the context of functional languages [11], [12]. In addition, some functional programming
languages allow for lazy evaluation or laziness, which delays the evaluation of an expression until
its value is needed, and results in efficiency in execution but nondeterminism in the order of code
execution [13]. Even though laziness is a major feature of not only functional languages but also
imperative languages such as R [14], while Hall and O’Donnell discussed how laziness might impede
the use of conventional debugging techniques for lazy languages [15], [16], we are not aware of any
empirical evidence to date on how laziness might affect debugging.

To understand what debugging strategies are employed in functional programming and whether
the unique features of functional programming affect debugging, as a first step, we interviewed four
expert Haskell programmers about their past experience in debugging Haskell programs. We chose
Haskell as the subject of study due to the following reasons: (1) it is similar to other functional
languages [17]; (2) it was rated as the second most popular functional language as of May 2022
(almost as popular as Scala) [18]; and (3) it is the only functional language with default laziness. Our
study intends to address the following research questions:

RQ1: What strategies do people use to debug in Haskell?
RQ2: What distinguishes debugging in Haskell from debugging in other languages?

Our preliminary findings suggest that while debugging strategies for Haskell are similar to strategies
for other languages, some features of Haskell and functional programming cause challenges in adopting
these debugging strategies. Guided by the results, at the end of the paper we also call for future work
that collects more evidence about how debugging is done in Haskell and functional programming in
general, and explores the design space for usable debugging aids in this domain.

1/12

https://orcid.org/0000-0002-4242-419X
https://orcid.org/0000-0001-9950-672X
https://orcid.org/0000-0002-9369-4069
https://orcid.org/0000-0003-3957-0628

Table 1. Sumary of participants’ demographics.
For the column Types of Haskell Experience, “Personal” refers to Personal Side Projects.

Participant Occupation
Years of Programming
Experience

Years of Haskell
Experience

Types of Haskell
Experience

P1
Undergraduate
Student

8 - 9 years 8 years
Personal, Class,
Open Source

P2
Ph.D
Student

17 years 13 years
Research, Personal,
Class, Teaching

P3
Ph.D.
Student

14 years 10 years
Research, Personal,
Teaching

P4
Ph.D.
Student

10 years 5 years
Research, Personal,
Industry

2 Methodology
To gain insight into how expert Haskell programmers debug, we interviewed four participants (three
male, one female).
Recruitment. We recruited participants from students in the Computer Science and Engineering de-
partment of our institution. We screened participants based on their self-reported Haskell experience
and their answers to a 15-minute Haskell proficiency survey. The survey questions included tasks of
code comprehension, writing, and debugging, and some questions about Haskell types, monads, and
higher order functions. All of our participants had at least five years of experience in Haskell and an-
swered every question correctly. Each particpant was compensated with $15 for completing the study.
Participants. We interviewed four participants: three graduate students (P2, P3, P4) and one
undergraduate student (P1). P1 took a graduate-level Haskell course, P2 and P3 have been teaching
assistants for a graduate-level Haskell course several times, and P4 had two industry experiences in
Haskell. All four participants were first exposed to imperative languages, but Haskell was the first
functional language they learned. Further demographics are summarized in Table 1. Three of the
interviews were conducted in person (P1, P3 and P4) and one using Zoom (P2).
Procedure. Participants were asked to complete a 45-minute semi-structured interview. We di-
vided our questions into three categories: programming background, sentiments towards functional
programming and Haskell, and Haskell debugging experience. For each category we had a list of
questions, and the interviewers were allowed to ask questions out of order or ask follow-up questions.
The questions were formulated according to the research questions and attempted to identify both
the causes of the difficulties participants faced during debugging and possible solutions that address
them. Specifically, the questions in the last category focused on anecdotal examples of Haskell bugs,
strategies to approaching Haskell bugs, prior experience with Haskell debugging tools, and desires for
additional Haskell debugging support. All of the interviews were done by the first two authors. After
the interview, each participant was asked to complete a short demographics survey.
Data Collection. The data collected from each participant consisted of an audio recording of the
interview and demographics information from the post survey, which included the participant’s gender,
details of their programming experience, and math background. We transcribed the audio recordings
using a transcription service. The transcribers were provided with a domain-specific glossary including
but not limited to: Haskell, recursion, OCaml, IDE, and GHCi [19]. Afterwards the first two authors
manually went through the final transcripts and corrected any discrepancies they found, seeking to
minimize transcription error.
Analysis. To analyze the data, we conducted a thematic analysis [20]. The first two authors con-
structed codes using a bottom-up approach, making sure they agreed upon every code. They then
derived and iterated on themes from the codes. We concluded our analysis with several themes, which
we report as paragraph titles in Sec. 3.

Huang et al. | PLATEAU | v.13 | n.1 | ennnnn | 2023 2/12

3 Results
We elaborate on how our findings may address our research questions (RQs), and, from the find-
ings, derive hypotheses to be validated in future research. In general, we hypothesized that Haskell
programmers consider seven main strategies when debugging, and that some features of Haskell and
functional programming impede the execution of these debugging strategies.

3.1 RQ1: Debugging Strategies for Haskell
To understand the debugging processes participants used when debugging Haskell programs, we asked
the participants to walk us through a recent debugging session in Haskell. We asked them what
strategies they used to locate and find the specific bug(s) in the given scenario, and followed up
with questions of whether they used similar approaches for other debugging sessions in Haskell they
had encountered. Although the bugs reported by the participants occurred in scenarios ranging from
pretty-printing the content of a directory (P4) to implementing language interpreters (P3), we found
that their debugging processes consisted of seven main strategies, which we describe below.
Running Program with Test Inputs. All participants suggested that after some code was written,
the first reaction was usually to run the code against some test inputs, although some test inputs
that depend on user input are hard to replicate. A test input, for example, could be one simple test
case that the programmer assumes to cover all parts of the program to be tested (P1, P2, P3), or a
test suite already written by other programmers if the code comes with starter code or is part of a
collaborative codebase (P4). This step could be repeated during the debugging process, and P2 would
specifically “[try] to make a minimal example of the input that would trigger the bug.” However, P1
mentioned that it is generally hard to automate and replicate test inputs for I/O events.
Forming or Updating Mental Models. Participants claimed that they only started to thoroughly
reason about (or update, if they were already in the middle of debugging) their mental models of
the program execution until after they obtained some results from running the program. P1 explicilty
mentioned that they would “look at the result, look at [their] code, [and] try to understand why [they]
got [the run results].” Note that in our study, all participants reflected upon scenarios of debugging
code written by themselves. It is possible that some vague mental model of program execution might
have been already made simultaneously when the code was being written, as Katz and Anderson
suggested [11]. We do not have enough data to explain whether such a vague mental model existed
before the debugging session starts, which we leave to future work.
Singling out and Running Faulty Segments. To identify the locations of the faults [21], participants
mentioned that they could pull out problematic subcomponents of the program and rerun the same
test inputs against them until the fault(s) were found, but the approach would better work with code
written separating concerns (P1, P4). P1 further pointed out that it is generally hard to separate
and run faulty code that is part of some monadic code. Participants also used different approaches
to test these segregated functions against the test inputs. P1, P3 and P4 would load the functions
into GHCi [22], a REPL for Haskell, although P4 would rather rerun the whole program than using
GHCi when the program came with a set of well-setup test cases. P2 did not use GHCi as much and
usualy “just [compiled] and then [ran] the actual program.
Adding Code to Print. Participants suggested that they would sometimes add code for printing to
reveal intermediate values that might go against their expectations, but printing is difficult in Haskell.
Listing 1 shows the definition of a function makeEven that takes an argument n, and Listing 2 and
Listing 3 illustrate how the code should be modified (highlighted in yellow) to print out the argument
at the beginning of the function. Before printing, the expression has to be a Show instance, for which
a show function (that creates a string representation of the instance) needs to be implemented. In
our example, the expression n is an Int type, which is already a Show instance. Listing 2 shows one
approach to print n: one could call print n, which is equivalent to putStrLn (show n) [23], with
the premise that the code that calls print n is an IO action. Listing 3 shows another approach
using functions such as trace from the Debug.Trace library [24]. Either approach of printing in
Haskell requires the programmer to first ensure that the expression to be printed is a Show instance
and implement the show function for it if needed, then decide between using (1) print, which may

Huang et al. | PLATEAU | v.13 | n.1 | ennnnn | 2023 3/12

ask for additional refactoring for the code to produce an IO, or (2) functions from the Debug.Trace
library, which requires no IO actions but proper insertions of those trace calls. As such, we find
printing in Haskell to be tedious, requiring a non-trivial amount of code insertion that results in code
refactoring, as is confirmed by most participants (P1, P2, P3).

makeEven : : I n t −> I n t
makeEven n =

case (even n) o f
True −> n
F a l s e −> n+1

Listing 1. Without printing.

makeEven : : I n t −> IO Int
makeEven n =

do
print n
ca se (even n) o f

True −> return n
F a l s e −> return (n+1)

Listing 2. Printing with print.

import Debug.Trace

makeEven : : I n t −> I n t
makeEven n =

trace (show n) $
ca se (even n) o f

True −> n
F a l s e −> n + 1

Listing 3. Printing with trace.

Forming an Explanation for the Fault. Based on the results they saw from testing faulty segments
of the program or printing intermediate values, participants would attempt to explain to themselves
what resulted in the overall faulty behavior. While this step seems straightforward, participants said
that the mental reasoning occurred purely in their heads, and they would need to “[think] about it really
hard until [figuring] out what the problem was.” (P2) P1 deemed the process as “re-understanding
the problem” that the code intended to solve, and if the process failed, “we cry a little,” said P3.
Attempting Fixes. Although not directly mentioned by the participants, their description of the
debugging process suggested that they would attempt to fix the code based on their hypotheses of
what caused the fault(s). To confirm that their fixes work as expected, they would run the full program
with the test inputs they had used, and repeat the rest of the process to “iteratively improve [the
code] until [they] actually get it to the point where it produces the right output.” (P4)
Using External Resources. Apart from the steps involved in debugging, participants also reflected
on their use of external resources when debugging. All participants said that they used one main form
of external resource when debugging: documentation for library functions that were part of their code.
P1 further stated that unofficial resources such as StackOverflow would be useless when debugging,
while acknowledging its usefulness in code authoring. As for external Haskell tooling, all participants
commented on existing Haskell debugging tools (more in Sec. 3.2), P4 mentioned ghcid [25], which
automates re-compilation every time the code is modified, and P1 and P4 claimed the usefulness of
the Haskell Language Server [26], which provides more information through program analysis that
could facilitate debugging.

Hypothesis: Haskell programmers consider seven main strategies when debugging: running
program with test inputs, forming/updating mental model, singling out and running faulty
segments, adding code to print, forming an explanation for the fault, attempting fixes, and
using external resources.

3.2 RQ2: Debugging in Haskell vs. Other Languages
Based on our interviews, we identified four key features that distinguish debugging in Haskell from
debugging in other languages: laziness, the lack of good debugging support, the type system, and the
declarative syntax and abstractions.
Laziness. Participants felt that the presence of laziness complicates debugging in Haskell. Laziness
allows the evaluation of an expression to be delayed until it is needed, and benefits performance
optimization (detailed in Sec. 5). It is default in Haskell but optional in other functional languages.
The default laziness in Haskell makes it difficult for even experienced programmers to predict program
behavior during development [17]. In addition, insertions of code for printing expression values can
cause code evaluation order to vary significantly from one run to the next. For example, our example
in Listings 1, 2, and 3 shows that without printing, the evaluation of n is not needed until even n is
called (Listing 1), but printing n forces its evaluation (Listings 2 and 3) and thus changes the order of
evaluation. Our participants experienced similar struggles during debugging. Indeed, laziness “makes

Huang et al. | PLATEAU | v.13 | n.1 | ennnnn | 2023 4/12

figuring out what [is] going wrong much less straightforward than [one] would like it to be” (P2) and
prevents programmers from “stepping straight through a program” (P3), causing a mismatch between
programmers’ expectations of order of evaluation and the reality. P4 mentioned an existing mechanism
to enforce non-lazy evaluation, but doing so brings in the risk of changing the overall behavior of the
entire program, while non-lazy evaluation is only needed for specific debugging scenarios.

Despite struggling with laziness when debugging, all participants appreciated laziness in develop-
ment for its help with performance (P3) especially when the code involves data structures that contain
thunks (P1), which are subroutines used for lazy evaluation [27]. Therefore, instead of eliminating
laziness, all participants expressed a desire for debugging support that handles laziness better. To
better handle laziness in debugging, one solution is to show the existence of initialized but unevaluated
structures (P1, P3), and another is to show the progress of lazy evaluations on partially evaluated
data structures (P1).

Hypothesis: While default laziness is appreciated in development, in debugging it makes
it challenging to predict the order of execution especially when printing is used, and causes
confusion.

Lack of Good Debugging Support. All participants stated that Haskell has exceptionally bad
debugging support, which further distinguishes it from other languages regarding debugging. Despite
having extensive Haskell experience, participants have only heard of the GHCi debugger [19] even
though other debuggers exist (e.g., Hat [28]). Only two participants (P1, P3) have used the GHCi
debugger [19] (the most recent attempt in an imperative-style debugger) and two were dissuaded from
using it by their peers (P2) and managers (P4). P1 and P3 reported that people without sufficient
expertise with the debugger would find it very difficult to use and that the debugger would not improve
their debugging experience. P1 considered the step-wise experience offered by the GHCi debugger to
be unintuitive. They suggested that showing how the code has been executed step-by-step only helps
when the code is imperative, which is not the case for a Haskell program, and so “linearizing [the
execution of non-imperative code] in some arbitrary way and then stepping through that is not helping
you.” Participants also mentioned that the GHCi debugger either does not give enough information
about the program or gives information that is too fine-grained to be helpful. For example, P1 stated
that the GHCi debugger would show that the execution had reached inside a bind function, but this
information does not help resolving faults in the program.

Reflecting on their experience with debuggers for imperative languages, participants wished to have
similar debugging support in functional programming in general: the ability to pause and terminate
the program execution (P4), to enforce the order of execution (all participants), and to step through
the execution (all participants). Although a survey of existing imperative debugging tools is beyond
the scope of our study, participants were even slightly unsatisfied with the level of control provided
by existing debuggers for imperative languages. P4 particularly would rather use printing mechanisms
instead of debuggers to debug regardless of the paradigm. Nonetheless, in functional programming,
all participants claimed that they would use a debugger if better debugging support were available,
especially one that could help them visualize lazy execution.

Hypothesis: Haskell programmers tend not to use debuggers despite their existence, pos-
sibly due to their steep learning curve and potential lack of usability. There is a desire for
better debugging support for Haskell that allows for more control in debugging.

Type System. Participants also suggested that Haskell’s strong type system distinguishes debugging
in Haskell from debugging in other (typed) languages in that the type system both aids and impedes
debugging. On the one hand, the type system catches some errors at compile time, allowing partic-
ipants to quickly iterate and refine their implementations before running the program. This finding
matches existing literature [29]. In fact, participants do not consider resolving type errors to be part
of the debugging process but view it as part of the development. P3 particularly stated when writing
code, they “always [hit] type errors and fix them” while debugging is a separate process that does not
involve type errors. On the other hand, type errors are not always intuitive. After years of experience,

Huang et al. | PLATEAU | v.13 | n.1 | ennnnn | 2023 5/12

participants no longer struggle with compiler error messages but acknowledge that the learning curve
for Haskell compile error messages was very steep.

Furthermore, Haskell supports custom types, the implementation of which could come with code
inserted by the compiler. Nevertheless, the type system might impose additional burden on the
programmer when implementing custom types, and even cause the compiler-inserted code to introduce
unexpected bugs. First, the type system enforces that the custom types become Show instances so
that printing mechanisms can be applied when needed (detailed in Sec. 3.1), forcing the programmer
to extend the existing implementation of custom types before the instances can be printed during
debugging (P3). Second, P2 pointed out that while the compiler can, based on type inference,
automatically generate some functions for custom data types of which the instances could be None,
these functions crash when called on the None instances, causing more defects for the programmer
to resolve. Finally, P4 mentioned that sometimes passing type checks lured them into a false sense
of security, as their confidence with Haskell’s strong type system could lead to the false assumption
that passing compilation checks guarantees being free of logical and runtime errors. Participants’
comments on how Haskell’s type system affects their debugging experience suggest the following:

Hypothesis: The Haskell type system can be a double-edged sword in debugging, and even
expertise with the type system is not sufficient for the programmer to fully leverage its
benefits.

The Declarative Syntax and Abstractions. When asked how debugging in Haskell differs from an
imperative context, participants appreciated the declarative syntax and support for abstractions of
Haskell, but they stated that these features bring challenges to debugging. They believed that their
observations can be generalized to other functional languages.

Participants liked that Haskell’s declarative syntax and support for abstractions help them focus
on what to achieve in the program as opposed to how to achieve the steps. These features make
functional programming in general “a more natural way to write programs” because it “matches up
with how [one thinks] about solving problems” without forcing them to consider “the mechanics of
how to do things.” (P2)

However, Haskell’s declarative syntax and support for abstractions eliminate from the code how
the program achieves its output. When debugging, participants said that they do want to see how the
computations are done, but such information is not available in code written in functional languages
including Haskell, which carry a declarative syntax. P3 frequently asked themselves a question when
debugging: “how did I get here?” P1 also pointed out that the lines of code written in an imperative
language “correspond to [their] intuitive breakdown of how [the code] does stuff,” while in a functional
language “their understanding of. . . the fundamental pieces” are not embedded in the code.

In addition, code readability is critical for comprehension and thus debugging [30], but partici-
pants worried that Haskell’s abstractions (e.g., Algebraic Data Types and Typeclasses) reduce code
readability and thus impede debugging. P4 particularly disliked the reduced code readability caused
by abstractions, as one would need to keep track of the specifications of any abstractions they cre-
ated somewhere in their working memory, such as “single line functions that do incredibly non-trivial
things. . . in 80 characters,” which was echoed by P3. To alleviate the additional burden on their work-
ing memory when working with abstractions, P1 and P2 used meaningful names for type constructors
(e.g., data LeafOrNode a = Leaf | Node (LeafOrNode a) a (LeafOrNode a) that represents
a binary tree) to embed some, if not all, of the abstracted information. Still, additional effort is re-
quired to cope with Haskell’s abstractions, and the extra load it takes on the working memory would
only lead to more frustration in debugging.

Hypothesis: While Haskell’s declarative syntax and support for abstractions provide bene-
fits in code authoring, they can also impede debugging.

3.3 Threats to Validity
Our work is a step towards a more thorough investigation, and the preliminary results imply hypotheses
that need to be validated in future work to further address the following threats to validity:

Huang et al. | PLATEAU | v.13 | n.1 | ennnnn | 2023 6/12

Participants. We recruited a small sample of participants from the same department of one institution,
all of whom are currently students. We mitigated this limitation of recruitment by only recruiting and
screening expert Haskell programmers with a variety of experience in the language, who provided us
with a valuable first peek into debugging in Haskell leveraging their past experience.
Study Setup. We only gathered anecdotes of debugging code written by the participants themselves
but not code written by others, while debugging code written by others might lead to a different
debugging experience than debugging their own code [5], [11], [31]. We leave it to the future work
for addressing this limitation. The findings are also based on participants’ reflection on their past
debugging experience, the details of which could be missing or inaccurate, bringing noise to the data
collected. To alleviate the threat, the interviewers asked follow-up questions when they felt that
clarifications on the anecdotes were necessary.

4 Discussion
Our findings show that Haskell programmers use several approaches to resolve bugs, and consult
external resources when needed to facilitate the debugging process. The findings indicate that, when
debugging their own code, strategies adopted by expert Haskell programmers are similar to strategies
mentioned in the literature [3], [5], [11], [32]: programmers use an isolation-based strategy [31],
making/updating assumptions of bug locations and causes using the information obtained from the
edit-run cycles [33] (which includes results from printing and consulting external resources), attempting
fixes based on the assumptions, and iterating this process until the bugs are resolved. Connections
with existing literature suggest that when debugging Haskell programs, programmers consider similar
strategies to the debugging strategies used for other languages. Nevertheless, our preliminary study
only reveals that programmers adopt these debugging strategies individually but does not suggest
the ordering of these strategies, while existing literature indicates that the use of some strategies
depends on the results of using other strategies. We leave it to future work to gather more evidence
to synthesize a full picture of the debugging workflow of Haskell programs and how the strategies
interact with one another in the workflow.

Furthermore, our study reveals several features of Haskell that impede the execution of some of
the identified debugging strategies. While both our participants and respondents of the 2005 GHC
survey [19], [34] pointed out that debugging in Haskell is challenging due to its laziness, lack of good
debugging support, and type system, our participants further found Haskell’s declarative syntax and
support for abstractions confusing when debugging, which also applies to other functional languages.
In particular, abstractions can be powerful when carefully crafted, but programmers might need to
remember additional information regarding the components that have been abstracted, which adds
to the difficulty in debugging. Future research is needed to further understand the challenges in
debugging that are caused by language- and paradigm-dependent factors, in Haskell and functional
programming in general.

5 Related Work
5.1 Functional Programming and Haskell

Functional programming is a paradigm that emphasizes avoiding shared mutable state. Example func-
tional programming languages include Lisp [35], OCaml [36], and Haskell [37]. Hughes further argued
that the paradigm results in well-structured programs, which is beneficial for building complex software
[2]. As such, functional programming has gained popularity in both academia and industry [38].

Haskell is a functional language that first appeared in 1990 [39], rated as the second most popular
functional language as of May 2022 [18]. Hudak et al. provided an extensive review of its history,
technicalities, tooling, and impact [17]. Laziness or lazy evaluation refers to the ability to delay eval-
uations of expressions until absolutely needed, preventing performance overheads and nonterminating
code [2]. Haskell has laziness by default, which Hudak et al. considered to be one of its highlights,
the other one being its strong type system [17]. Haskell is purely functional, but it also uses monads
[40] to model effects that might involve computations typically done in an imperative manner and
with side effects, such as I/O operations. Such monadic code, as a result, may add to the complexity

Huang et al. | PLATEAU | v.13 | n.1 | ennnnn | 2023 7/12

of debugging in Haskell, as it “can be difficult to read.” [40] As is noted by Hudak et al. [17],
conventional debugging approaches to tracing and printing (which are “side effects” to be done with
monads) are rather hard to apply, and that debugging support for Haskell is itself a separate line of
research (such as the GHCi debugger [19], more in Sec. 5.2 below).

Our work concerns how programmers debug when using functional programming languages. In
particular, while laziness is an important concept in some functional languages and popular imperative
languages such as R, the usability of laziness is barely studied [14], let alone its potential impact on
debugging. Furthermore, research in human factors in functional programming is still limited. Despite
the existence of evidence in how functional programmers author code [41], we have little knowledge of
how functional programmers debug their code except for one study with novice Lisp programmers [11].
Our work is a step towards bridging this gap in the literature: to better understand how debugging is
done in functional programming, and to what extent the unique features of functional programming
affect the debugging process.

5.2 Debugging
Debugging is about locating and resolving defects in computer software [4]. As such, the process of
debugging can be broken down into two main segments: locating bugs (or fault localization [21]) and
fixing bugs.

Existing evidence shows a general pattern of how fixing bugs depends on locating bugs, which
requires a thorough understanding of the code and the problematic segment. Katz and Anderson
suggested that programming experience determines the ability to comprehend the context of debug-
ging [11], which further determines the efficiency and success of debugging [3], [42]. However, little
is known about how language- and paradigm-specific factors could result in variations in debugging
strategies. The majority of literature of the debugging activity has been done with imperative lan-
guages such as Fortran [3], Java [5], [6] and JavaScript [33], with both novice and expert programmers.
With functional languages, while there is some research into automated fault localization techniques
for Haskell [43], [44] and OCaml [45], few studies focus on how humans locate bugs in functional
languages, and the sole study that we found was done with novice Lisp programmers [11]. In 2005,
the Haskell maintainers surveyed Haskell programmers for future improvements to the language [19],
[34], which unexpectedly surfaced challenges in debugging Haskell programs. Yet, evidence lacks in
how debugging in Haskell is done and impeded by these challenges.

As a step towards understanding the effects of programming language- and paradigm-specific
factors on debugging experience, we study how expert Haskell programmers debug their code and
whether features of the Haskell language and functional programming in general lead to convenience
or challenges in debugging. Our preliminary results find similarities between strategies for debug-
ging Haskell programs and strategies for debugging programs written in other languages, as existing
literature suggests [3], [5], [11], [32]. Nevertheless, our study also indicates that some features in
Haskell and functional programming (some of which agree with findings from the 2005 GHC survey
[34]) might impede the execution of the identified debugging strategies, such as forming a mental of
execution and adding code to print, which requires further investigation.

In addition, while debugging aids exist for functional languages [19], [28], [46]–[53], whether or
not debugging aids are widely adopted in functional programming remains unknown. Indeed, while
WinHIPE [51], a novice-oriented IDE for a functional language called Hope, has been evaluated with
novice programmers [12], to the best of our knowledge there is no usability study of any debugging
aids for functional languages with expert programmers. Although we study the broader context of how
expert Haskell programmers debug, we are also able to collect evidence regarding the usage pattern
of debugging aids for Haskell (mainly the GHCi debugger [19] and Freja [52], Hood [53], and Hat [28]
that precede it), which could be one step towards evaluating and improving the usability of debugging
aids for Haskell and for functional languages.

Huang et al. | PLATEAU | v.13 | n.1 | ennnnn | 2023 8/12

6 Conclusion and Future Work
We interviewed four expert Haskell programmers to understand how debugging is done in Haskell
and different from debugging in other languages. We identified several hypotheses to be validated
in future research, mainly: while programmers adopt similar debugging strategies in Haskell to the
strategies used in other languages, there are Haskell- and functional programming-specific features
that might impede executing these strategies. Although some of our findings agree with the 2005 GHC
survey [19], [34], our study further reveals programmers’ frustration with existing debugging support
and Haskell’s declarative syntax and abstractions, which may apply to other functional languages.

Future work could involve an extended interview study that includes more participants with diverse
backgrounds and adopts similar methodology and questions to gather more evidence of debugging
in Haskell. In addition, since Katz and Anderson [11], Romero et al. [5], and Yoon and Garcia
[31] all suggested that programmers might consider different debugging strategies when debugging
unfamiliar code, participants could be interviewed to compare debugging strategies for Haskell code
with different authorship.

Future research could also lead to an observational study in which Haskell programmers debug
code and potentially used existing debugging tools, which could complement the anecdotal findings
from an interview study. An observational study as such could solicit additional insight into debugging
in Haskell, and further identify design opportunities for Haskell debugging aids.

Acknowledgement
This work was supported in part by the National Science Foundation under Grant No. 2107397.

References
[1] S. L. Peyton Jones and P. Wadler, “Imperative functional programming,” in Proceedings of the 20th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser. POPL ’93, New
York, NY, USA: Association for Computing Machinery, Mar. 1993, pp. 71–84, isbn: 978-0-89791-560-1.
doi: 10.1145/158511.158524.

[2] J. Hughes, “Why Functional Programming Matters,” The Computer Journal, vol. 32, no. 2, pp. 98–107,
Feb. 1989, issn: 0010-4620, 1460-2067. doi: 10.1093/comjnl/32.2.98.

[3] J. D. Gould, “Some psychological evidence on how people debug computer programs,” International
Journal of Man-Machine Studies, vol. 7, no. 2, pp. 151–182, Mar. 1975, issn: 0020-7373. doi: 10.1016/
S0020-7373(75)80005-8.

[4] R. McCauley, S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon, L. Thomas, and C. Zander, “Debug-
ging: A review of the literature from an educational perspective,” Computer Science Education, vol. 18,
no. 2, pp. 67–92, Jun. 2008, issn: 0899-3408, 1744-5175. doi: 10.1080/08993400802114581.

[5] P. Romero, B. du Boulay, R. Cox, R. Lutz, and S. Bryant, “Debugging strategies and tactics in a
multi-representation software environment,” International Journal of Human-Computer Studies, vol. 65,
no. 12, pp. 992–1009, Dec. 2007, issn: 1071-5819. doi: 10.1016/j.ijhcs.2007.07.005.

[6] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On the dichotomy of debugging behavior among pro-
grammers,” in Proceedings of the 40th International Conference on Software Engineering, Gothenburg
Sweden: ACM, May 2018, pp. 572–583, isbn: 978-1-4503-5638-1. doi: 10.1145/3180155.3180175.

[7] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, “Interactive record/replay for web application debugging,”
in Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, St.
Andrews Scotland, United Kingdom: ACM, Oct. 2013, pp. 473–484, isbn: 978-1-4503-2268-3. doi:
10.1145/2501988.2502050.

[8] A. J. Ko and B. A. Myers, “Finding causes of program output with the Java Whyline,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, Boston MA USA: ACM, Apr. 2009,
pp. 1569–1578, isbn: 978-1-60558-246-7. doi: 10.1145/1518701.1518942.

[9] E. Schoop, F. Huang, and B. Hartmann, “UMLAUT: Debugging Deep Learning Programs using Program
Structure and Model Behavior,” in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, Yokohama Japan: ACM, May 2021, pp. 1–16, isbn: 978-1-4503-8096-6. doi:
10.1145/3411764.3445538.

Huang et al. | PLATEAU | v.13 | n.1 | ennnnn | 2023 9/12

https://doi.org/10.1145/158511.158524
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1016/S0020-7373(75)80005-8
https://doi.org/10.1016/S0020-7373(75)80005-8
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1016/j.ijhcs.2007.07.005
https://doi.org/10.1145/3180155.3180175
https://doi.org/10.1145/2501988.2502050
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1145/3411764.3445538

[10] B. T. Vander Zanden, D. Baker, and J. Jin, “An explanation-based, visual debugger for one-way con-
straints,” in Proceedings of the 17th Annual ACM Symposium on User Interface Software and Tech-
nology - UIST ’04, Santa Fe, NM, USA: ACM Press, 2004, p. 207, isbn: 978-1-58113-957-0. doi:
10.1145/1029632.1029670.

[11] I. Katz and J. Anderson, “Debugging: An Analysis of Bug-Location Strategies,” Human-Computer
Interaction, vol. 3, no. 4, pp. 351–399, Dec. 1987, issn: 0737-0024. doi: 10.1207/s15327051hci0304_2.

[12] M. Á. M. Sánchez, C. A. L. Carrascosa, C. P. Flores, J. U. Fuentes, and J. Á. V. Iturbide, “Empir-
ical Evaluation of Usability of Animations in a Functional Programming Environment,” Universidad
Complutense de Madrid, Technical Report 141/04, 2004, p. 22.

[13] P. Hudak, “Conception, evolution, and application of functional programming languages,” ACM Com-
puting Surveys, vol. 21, no. 3, pp. 359–411, Sep. 1989, issn: 0360-0300, 1557-7341. doi: 10.1145/
72551.72554.

[14] A. Goel and J. Vitek, “On the design, implementation, and use of laziness in R,” Proceedings of the
ACM on Programming Languages, vol. 3, no. OOPSLA, pp. 1–27, Oct. 2019, issn: 2475-1421. doi:
10.1145/3360579.

[15] C. V. Hall and J. T. O’Donnell, “Debugging in a side effect free programming environment,” in Pro-
ceedings of the ACM SIGPLAN 85 Symposium on Language Issues in Programming Environments,
ser. SLIPE ’85, New York, NY, USA: Association for Computing Machinery, Jun. 1985, pp. 60–68,
isbn: 978-0-89791-165-8. doi: 10.1145/800225.806827.

[16] J. T. O’Donnell and C. V. Hall, “Debugging in applicative languages,” LISP and Symbolic Computation,
vol. 1, no. 2, pp. 113–145, Sep. 1988, issn: 1573-0557. doi: 10.1007/BF01806168.

[17] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, “A history of Haskell: Being lazy with class,”
in Proceedings of the Third ACM SIGPLAN Conference on History of Programming Languages, San
Diego California: ACM, Jun. 2007, isbn: 978-1-59593-766-7. doi: 10.1145/1238844.1238856.

[18] Stack Overflow Developer Survey 2022. [Online]. Available: https://survey.stackoverflow.co/2022/
?utm%5C_source=social- share%5C&utm%5C_medium=social%5C&utm%5C_campaign=dev-
survey-2022.

[19] S. Marlow, J. Iborra, B. Pope, and A. Gill, “A lightweight interactive debugger for haskell,” in Proceed-
ings of the ACM SIGPLAN Workshop on Haskell Workshop - Haskell ’07, Freiburg, Germany: ACM
Press, 2007, p. 13, isbn: 978-1-59593-674-5. doi: 10.1145/1291201.1291204.

[20] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qualitative Research in Psychology,
vol. 3, no. 2, pp. 77–101, Jan. 2006, issn: 1478-0887. doi: 10.1191/1478088706qp063oa.

[21] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A Survey on Software Fault Localization,”
IEEE Transactions on Software Engineering, vol. 42, no. 8, pp. 707–740, Aug. 2016, issn: 1939-3520.
doi: 10.1109/TSE.2016.2521368.

[22] 3. Using GHCi Glasgow Haskell Compiler 9.4.3 User’s Guide. [Online]. Available: https://downloads.
haskell.org/ghc/latest/docs/users%5C_guide/ghci.html%5C#id2.

[23] Print | Prelude. [Online]. Available: https://hackage.haskell.org/package/base-4.17.0.0/docs/Prelude.
html%5C#v:print.

[24] Debug.Trace, https://hackage.haskell.org/package/base-4.17.0.0/docs/Debug-Trace.html.

[25] N. Mitchell, Ghcid, Nov. 2022. [Online]. Available: https://github.com/ndmitchell/ghcid.

[26] N. Mitchell, M. Kiefer, P. Iborra, L. Lau, Z. Duggal, H. Siebenhandl, J. N. Sanchez, M. Pickering, and
A. Zimmerman, Building an Integrated Development Environment (IDE) on top of a Build System, Sep.
2020. doi: 10.1145/3462172.

[27] P. Z. Ingerman, “Thunks: A way of compiling procedure statements with some comments on procedure
declarations,” Communications of the ACM, vol. 4, no. 1, pp. 55–58, 1961.

[28] O. Chitil, C. Runciman, and M. Wallace, “Transforming Haskell for Tracing,” in Implementation of
Functional Languages, G. Goos, J. Hartmanis, J. van Leeuwen, R. Peña, and T. Arts, Eds., vol. 2670,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 165–181, isbn: 978-3-540-40190-2 978-3-540-
44854-9. doi: 10.1007/3-540-44854-3_11.

Huang et al. | PLATEAU | v.13 | n.1 | ennnnn | 2023 10/12

https://doi.org/10.1145/1029632.1029670
https://doi.org/10.1207/s15327051hci0304_2
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/3360579
https://doi.org/10.1145/800225.806827
https://doi.org/10.1007/BF01806168
https://doi.org/10.1145/1238844.1238856
https://survey.stackoverflow.co/2022/?utm%5C_source=social-share%5C&utm%5C_medium=social%5C&utm%5C_campaign=dev-survey-2022
https://survey.stackoverflow.co/2022/?utm%5C_source=social-share%5C&utm%5C_medium=social%5C&utm%5C_campaign=dev-survey-2022
https://survey.stackoverflow.co/2022/?utm%5C_source=social-share%5C&utm%5C_medium=social%5C&utm%5C_campaign=dev-survey-2022
https://doi.org/10.1145/1291201.1291204
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1109/TSE.2016.2521368
https://downloads.haskell.org/ghc/latest/docs/users%5C_guide/ghci.html%5C#id2
https://downloads.haskell.org/ghc/latest/docs/users%5C_guide/ghci.html%5C#id2
https://hackage.haskell.org/package/base-4.17.0.0/docs/Prelude.html%5C#v:print
https://hackage.haskell.org/package/base-4.17.0.0/docs/Prelude.html%5C#v:print
https://github.com/ndmitchell/ghcid
https://doi.org/10.1145/3462172
https://doi.org/10.1007/3-540-44854-3_11

[29] L. Prechelt and W. Tichy, “A controlled experiment to assess the benefits of procedure argument type
checking,” IEEE Transactions on Software Engineering, vol. 24, no. 4, pp. 302–312, Apr. 1998, issn:
1939-3520. doi: 10.1109/32.677186.

[30] A. Von Mayrhauser and A. Vans, “Program comprehension during software maintenance and evolution,”
Computer, vol. 28, no. 8, pp. 44–55, Aug. 1995, issn: 1558-0814. doi: 10.1109/2.402076.

[31] B.-D. Yoon and O. Garcia, “Cognitive activities and support in debugging,” in Proceedings Fourth
Annual Symposium on Human Interaction with Complex Systems, Mar. 1998, pp. 160–169. doi: 10.
1109/HUICS.1998.659974.

[32] L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline, and G. Venolia, “Debugging Revisited: Toward
Understanding the Debugging Needs of Contemporary Software Developers,” in 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement, Oct. 2013, pp. 383–
392. doi: 10.1109/ESEM.2013.43.

[33] A. Alaboudi and T. D. LaToza, “Edit - Run Behavior in Programming and Debugging,” in 2021 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Oct. 2021, pp. 1–10. doi:
10.1109/VL/HCC51201.2021.9576170.

[34] The 2005 GHC survey, Apr. 2009. [Online]. Available: https://web.archive.org/web/20090419132601/
http://www.haskell.org/ghc/survey2005-summary.html.

[35] Common Lisp. [Online]. Available: https://lisp-lang.org/.

[36] OCaml. [Online]. Available: https://ocaml.org.

[37] Haskell Language, https://www.haskell.org/.

[38] Z. Hu, J. Hughes, and M. Wang, “How functional programming mattered,” National Science Review,
vol. 2, no. 3, pp. 349–370, Sep. 2015, issn: 2053-714X, 2095-5138. doi: 10.1093/nsr/nwv042.

[39] Report on the Programming Language Haskell, A Non-strict, Purely Functional Language, 1990. [On-
line]. Available: https://www.haskell.org/definition/haskell-report-1.0.ps.gz.

[40] P. Wadler, “Comprehending monads,” in Proceedings of the 1990 ACM Conference on LISP and Func-
tional Programming, ser. LFP ’90, New York, NY, USA: Association for Computing Machinery, May
1990, pp. 61–78, isbn: 978-0-89791-368-3. doi: 10.1145/91556.91592.

[41] J. Lubin and S. E. Chasins, “How statically-typed functional programmers write code,” Proceedings of
the ACM on Programming Languages, vol. 5, no. OOPSLA, pp. 1–30, Oct. 2021, issn: 2475-1421. doi:
10.1145/3485532.

[42] L. Gugerty and G. Olson, “Debugging by skilled and novice programmers,” SIGCHI Bull., vol. 17,
no. 4, pp. 171–174, Apr. 1986, issn: 0736-6906. doi: 10 . 1145 / 22339 . 22367. [Online]. Available:
https://doi.org/10.1145/22339.22367.

[43] F. Li, M. Wang, and D. Hao, “Bridging the Gap between Different Programming Paradigms in Coverage-
based Fault Localization,” in 13th Asia-Pacific Symposium on Internetware, Hohhot China: ACM, Jun.
2022, pp. 75–84, isbn: 978-1-4503-9780-3. doi: 10.1145/3545258.3545272.

[44] V. Vasconcelos and M. A. S. Bigonha, “HaskellFL: A Tool for Detecting Logical Errors in Haskell,”
International Journal of Computer and Systems Engineering, vol. 15, no. 8, pp. 479–493, Aug. 2021.

[45] E. L. Seidel, H. Sibghat, K. Chaudhuri, W. Weimer, and R. Jhala, “Learning to blame: Localizing novice
type errors with data-driven diagnosis,” Proceedings of the ACM on Programming Languages, vol. 1,
no. OOPSLA, pp. 1–27, Oct. 2017, issn: 2475-1421. doi: 10.1145/3138818.

[46] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler, and M. Felleisen,
“DrScheme: A programming environment for Scheme,” Journal of Functional Programming, vol. 12,
no. 02, Mar. 2002, issn: 0956-7968, 1469-7653. doi: 10.1017/S0956796801004208.

[47] J. Whitington and T. Ridge, “Visualizing the Evaluation of Functional Programs for Debugging,” 9
pages, 2017. doi: 10.4230/OASICS.SLATE.2017.7.

[48] ——, “Direct Interpretation of Functional Programs for Debugging,” Electronic Proceedings in Theoret-
ical Computer Science, vol. 294, pp. 41–73, May 2019, issn: 2075-2180. doi: 10.4204/EPTCS.294.3.

[49] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy, “Functional programs that explain their work,” in
Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming, ser. ICFP
’12, New York, NY, USA: Association for Computing Machinery, Sep. 2012, pp. 365–376, isbn: 978-1-
4503-1054-3. doi: 10.1145/2364527.2364579.

Huang et al. | PLATEAU | v.13 | n.1 | ennnnn | 2023 11/12

https://doi.org/10.1109/32.677186
https://doi.org/10.1109/2.402076
https://doi.org/10.1109/HUICS.1998.659974
https://doi.org/10.1109/HUICS.1998.659974
https://doi.org/10.1109/ESEM.2013.43
https://doi.org/10.1109/VL/HCC51201.2021.9576170
https://web.archive.org/web/20090419132601/http://www.haskell.org/ghc/survey2005-summary.html
https://web.archive.org/web/20090419132601/http://www.haskell.org/ghc/survey2005-summary.html
https://lisp-lang.org/
https://ocaml.org
https://doi.org/10.1093/nsr/nwv042
https://www.haskell.org/definition/haskell-report-1.0.ps.gz
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/3485532
https://doi.org/10.1145/22339.22367
https://doi.org/10.1145/22339.22367
https://doi.org/10.1145/3545258.3545272
https://doi.org/10.1145/3138818
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.4230/OASICS.SLATE.2017.7
https://doi.org/10.4204/EPTCS.294.3
https://doi.org/10.1145/2364527.2364579

[50] D. Ungar, H. Lieberman, and C. Fry, “Debugging and the experience of immediacy,” Communications
of the ACM, vol. 40, no. 4, pp. 38–43, Apr. 1997, issn: 0001-0782, 1557-7317. doi: 10.1145/248448.
248457.

[51] C. Pareja-Flores, J. Urquiza-Fuentes, and J. Á. Velázquez-Iturbide, “WinHIPE: An IDE for functional
programming based on rewriting and visualization,” ACM SIGPLAN Notices, vol. 42, no. 3, pp. 14–23,
Mar. 2007, issn: 0362-1340, 1558-1160. doi: 10.1145/1273039.1273042.

[52] H. Nilsson, “How to look busy while being as lazy as ever: The Implementation of a lazy functional
debugger,” Journal of Functional Programming, vol. 11, no. 6, pp. 629–671, Nov. 2001, issn: 1469-7653,
0956-7968. doi: 10.1017/S095679680100418X.

[53] A. Gill, “Debugging Haskell by Observing Intermediate Data Structures,” in Proceedings of the 4th
Haskell Workshop, 2000, p. 12.

Huang et al. | PLATEAU | v.13 | n.1 | ennnnn | 2023 12/12

https://doi.org/10.1145/248448.248457
https://doi.org/10.1145/248448.248457
https://doi.org/10.1145/1273039.1273042
https://doi.org/10.1017/S095679680100418X

	Introduction
	Methodology
	Results
	RQ1: Debugging Strategies for Haskell
	RQ2: Debugging in Haskell vs. Other Languages
	Threats to Validity

	Discussion
	Related Work
	Functional Programming and Haskell
	Debugging

	Conclusion and Future Work

