
UNFOLD: Enabling Live Programming for
Debugging GUI Applications

Ruanqianqian (Lisa) Huang
University of California, San Diego

La Jolla, CA, USA
r6huang@ucsd.edu

Philip J. Guo
University of California, San Diego

La Jolla, CA, USA
pg@ucsd.edu

Sorin Lerner
University of California, San Diego

La Jolla, CA, USA
lerner@cs.ucsd.edu

Abstract—Debugging GUI applications is challenging because
of the difficult-to-debug state changes caused by asynchronous
event handling and user interactions. Live programming, a
paradigm where programmers continuously see real-time traces
of every execution step as they edit the code, is promising for this
context, as it automates the visualization of state changes upon
inputs to the program. This paper explores how to design a live
programming experience for debugging GUI applications and
studies the effects of live programming in this context. Through
a formative design exploration, we derive three core concepts for
enabling live programming in debugging GUI applications: a UI
states timeline, connections between the UI and the code, and
automated event recording. We implemented these concepts in
UNFOLD, a live programming environment for JavaScript-based
GUI applications. A within-subject study with 12 participants
shows that, with UNFOLD, participants locate bugs faster in tasks
amenable to live programming, leverage liveness when debugging,
and deem the tool helpful and easy to use.

Index Terms—live programming, GUI applications, debugging,
event handling

I. INTRODUCTION

Debugging can be time-consuming and frustrating for pro-
grammers [1]–[3]. In the context of GUI (Graphical User
Interface) applications, debugging is even more challenging [4]
due to the use of event handlers to react to user interactions.
This asynchronous event handling of user interactions could
result in difficult-to-debug state changes and thus complicate
the debugging task, making program behavior difficult to
replicate or too complex to reason about [5].

Live programming is a paradigm where the programmer
receives immediate feedback or liveness on every step of
the execution continuously as the code is updated [6]–[8],
typically in the form of runtime values [6], [9] or traces [10]
on each program change. It is lightweight, requiring no ad-
ditional effort from the programmer besides an input to the
program to obtain such information. Prior work has shown
that live programming encourages more frequent testing [11],
facilitates finding bugs [12] and program comprehension [13]–
[15], and lowers the cognitive load in validating AI-generated
code [16]. In the context of debugging, which is an iterative
activity with frequent edit-run cycles [17], liveness could
facilitate this workflow by reducing potential interruptions.
More importantly, the run-time traces generated by liveness
imply the order of state changes, which is precisely what the
programmer might need for reasoning about program behavior.

As GUI applications might involve complex state changes,
live programming could bring potential benefits to resolving
unexpected behavior in these applications.

To meet the promises of live programming for GUI appli-
cations, we must overcome several notable challenges. First,
since event handling is the key to making GUI applications
interactive, the live feedback in the context of event handling
must be provided with the user interactions that trigger the re-
quired events, and these user interactions must persist through-
out the live feedback. Second, live programming for GUI
applications must provide run-time traces that present several
interconnected concepts during execution: user interactions,
program data, and changes to the GUI. Most importantly, the
traces must elucidate the ordering between all of these. Indeed,
the application of live programming to GUI applications and
their event handling has yet to be fulfilled. Furthermore, there
is still a need for a comprehensive solution that connects user
interactions, runtime data and GUI changes, all in a live way.

To address these challenges, this paper explores the design
of a live programming experience for debugging GUI applica-
tions. To better understand the needs of programmers in this
space and guide the design, we conducted a needfinding study.
From this study we derive three core concepts for enabling
liveness in this setting: a UI states timeline, UI-code corre-
spondences, and automated event triggering. Together, these
concepts allow the programmer to see a detailed visualization
that connects code, data, and UI changes, all within the context
of user interactions, all while being updated in a live way on
each code change, and with no additional tool configuration
or context switching between the editor and the debugger.

As a proof-of-concept of this idea, we created and evaluated
the usage of UNFOLD, a live programming environment for
web-based GUI applications that shows a timeline of changed
UI states, code that caused those changes, and automatic
replays of prior user interaction traces upon each code edit.
UNFOLD aligns with the notion of liveness [7] because it
visualizes every step of visual changes as a result of user
interaction traces and auto-refreshes these visualizations upon
edits to the code. By always showing changed UI states
and code that caused them, UNFOLD eliminates the need to
repeatedly restart execution or replicate user interaction inputs.

Example Usage Scenario. Alice is a front-end web engineer

306

2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

1943-6106/24/$31.00 ©2024 IEEE
DOI 10.1109/VL/HCC60511.2024.00041

Fig. 1. UNFOLD enables users to do live programming by interacting normally with the app, examining the timeline of UI states, seeing how buggy UI states
connect to code, editing and saving the code, and immediately seeing updated UI states.

trying to debug some faulty code that her colleague wrote. Her
team is building a landing page for a shopping website. When
the user clicks on a particular product description, the web app
pops up a modal dialog box to show a promotion for it, and
that pop-up should disappear when they hit the “close” button.
However, there is a bug somewhere as the pop-up does not
disappear when the “close” button is pressed. Fig. 1 shows how
Alice can find and fix this bug using UNFOLD by interacting
normally with the webpage without repeating her interactions
or restarting the execution.

(A) She clicks on a product on the webpage like a user does.
(B) Immediately she sees a pop-up of the promotion as

expected. The UI States Timeline at the bottom of UN-
FOLD shows the initial page UI state labeled with a (0)
circle, then two intermediate UI states labeled with (1)
and (2) showing the pop-up appearing (1) and the page
background darkening (2). This looks fine to her, so she
clicks the “close” button.

(C) On the page the pop-up did not disappear as expected,
which indicates a bug. But in the UI States Timeline,
states labeled (3) and (4) show that the pop-up did
disappear and is no longer visible in the UI, which seems
strange to Alice.

(D) Inspecting further, when she scrolls to the right in the
UI States Timeline, it shows that the pop-up did indeed
disappear but later came back in the subsequent states
labeled (5) and (6). By examining the code annotated
with labels shared by the unwanted UI states (5) and (6),
she realizes that the “click” event handler that shows the
pop-up modal dialog box was called at a time when she
did not expect it to be.

(E) Re-inspecting the structure of the DOM, Alice sees that
this is a bug related to event bubbling [18]. The click

event received on the “close” button bubbled up to the
entire page (a parent DOM node), causing its own click

event handler to execute. Alice quickly fixes this bug by
adding a stopPropagation() call to the beginning of
the click event handler for the “close” button to stop
event bubbling.

(F) As soon as Alice saves her changes, UNFOLD live re-
runs her code with the user interactions from her prior
session, and now the pop-up disappears as she expects.
She further confirms from the auto-refreshed UI states
visualization that the application now behaves exactly as
she expects.

Without UNFOLD, Alice would have needed to insert print

307

logging or breakpoints, edit her code, reload the page, click to
interact with it, inspect the logging or debugger output (which
may contain too little or too much output), and iterate until
she finds the bug. She might put logging or breakpoints in the
wrong places at first and then need to re-run and repeat her
page interactions a few times. A single button click may not
seem so tedious, but a realistic debugging scenario involves a
much longer chain of complex user interactions that need to
be manually repeated on each trial. UNFOLD eliminates this
tedium by showing UI state changes and live re-running the
edited code with user interactions from prior runs.

To assess how UNFOLD works in practice, we ran a compar-
ative within-subjects study, where 12 programmers debugged
event handlers in GUI applications using UNFOLD versus
standard browser developer tools. We found that, when using
UNFOLD, programmers located some GUI application bugs
faster, used runtime information more when debugging, and
deemed the tool usable and helpful.

This paper’s main research contributions are:
• A new application of live programming to debugging GUI

applications, which shows state changes and connections
to the code that caused those changes.

• A prototype of this concept, UNFOLD, and a comparative
user study showing its potential effectiveness for debug-
ging.

II. RELATED WORK

A. Live Programming

Live programming or liveness allows programmers to mod-
ify a program while receiving immediate feedback on how the
edits affect every step of the execution [6], [7], [19], typically
in the form of runtime values [6], [9] or traces [10]. It has
been applied to settings such as general-purpose languages
[9], [20], [21], data science [13], [14], [22], and physical
computing [11], [15], [23]. Prior work has found via quali-
tative evidence the potential benefits of liveness for program
comprehension [14], [15] and debugging [12], [24], [25].
A recent mixed-method study shows its potential help for
validating AI-generated code [16].

To our knowledge, the application of live programming
to developing or debugging GUI applications remains under-
explored. The closest to our work is RDE [26], which enables
liveness for event handling. However, RDE restricts the pro-
gram to having one rendering function and no function values
in the global state, creating no code-output correspondences,
which are key to live programming. Our work differs from
RDE in that we impose no restrictions on how the code
should be written and visualize code-output correspondences.
Another relevant work is Theseus [10], which live-visualizes
runtime traces of code execution for JavaScript code. Our work
adopts the in-situ visualization for runtime traces in Theseus
but further does the following that Theseus lacks: automating
user interactions and visualizing the temporal order of both
UI changes and data changes.

Our work UNFOLD is motivated by the promise that live
programming holds for understanding and debugging GUI

applications. Our work further extends prior live programming
work in two aspects. First, while prior live programming
work uses input that is already part of the program to enable
liveness, UNFOLD automatically records and replays inputs
outside of the program itself, i.e., user interactions. Second,
while prior work presents runtime traces on the level of
runtime data only, UNFOLD consolidates user interactions,
runtime data, and GUI changes in one live visualization.

In addition to live programming, live coding is a related
yet different line of work [6]. Although similarly named
and also automatically updating program output upon code
edits, live coding differs from live programming by showing
the final state only, while live programming continuously
visualizes program behavior in full including intermediate
states [6], [7]. Existing live coding tools for developing GUI
applications [27]–[32] are inspirations for our work regarding
designing the experience of immediacy.

B. Debugging and Comprehension Tools for GUI Applications

There is a rich line of debugging systems targeting GUI
applications without live programming. Amulet [4] is among
the first steps towards usable debugging tools for GUI apps,
which supports changing data values at runtime. Timelapse
explains changes of a specified DOM element [5], which,
similar to UNFOLD, automatically captures user interactions
and replays execution. Clematis captures application behavior
to a timeline of episodes and shows the event trace, execution
trace, and DOM mutations for each [33]. Doppio visualizes
high-level correspondences between callback methods and
GUI changes in Android apps [34]. Log-It augments print
debugging for web apps [35]. Most recently, Hypothesizer
enables debugging web applications with a hypothesis-based
approach [36]. However, none of these tools provide direct
connections from UI states back to code upon edits, which
UNFOLD implements.

Finally, there are systems for inspecting and understanding
the complex behavior of GUI applications, including web
applications [37]–[40] and Snap! applications [41]. Although
these tools do not enable code edits or incremental testing of
the edits, which are core to debugging, they inspire several
techniques we use to enable live programming for GUI ap-
plications. Specifically, we were inspired by the code-to-UI
connections in these systems to support understanding of GUI
behavior. We further extended these systems by (1) reporting
errors when they occur in a Timeline area, (2) auto-recording
event inputs while the user interacts with the app, and (3)
providing live feedback on how code edits affect every step of
the visual evolution and code-UI connections in the recorded
event context.

III. FORMATIVE STUDY AND DESIGN GOALS

Designing a live programming environment for debugging
GUI applications remains under-explored. To establish design
goals for this setting, we ran a formative observational study
with five programmers debugging JavaScript web event han-
dling code similar to our example from Fig. 1.

308

A. Formative Study Protocol

While we detail our formative study in a replication pack-
age1, we summarize the protocol below.
Participants. We recruited five expert JavaScript programmers
through Twitter whose experience with JavaScript ranged from
6 to 12 years. The participants had JavaScript experience in
at least three settings out of the following: industry, academic
research, open-source, school projects, and personal projects.
Procedure. We conducted a contextual inquiry [42] via video
conferencing, where each participant spent up to 60 min-
utes debugging one behavior of a given application and, if
time permitted, resolving other bugs. Throughout the study,
we noted down actions participants performed to achieve
certain goals. Such actions came from direct observations,
participants’ explanations via think-aloud when programming,
and the interviewer’s hypotheses confirmed/corrected by the
participants during and after the programming session.
Setup and Tasks. Participants programmed in their preferred
editors and were allowed to search the web for programming
help as they normally would. We randomly assigned the five
participants to work with one of the two broken web appli-
cations taken from real-world examples: a todo list app and a
web-based spreadsheet, both of which involve synchronizing
UI state changes with an underlying data model.

B. Design Goals

We briefly summarize our observations and the three design
goals (D1, D2, D3) that we derived from the study, which can
alleviate problems our participants encountered when using
existing tools.
D1: Non-Interruptive Tracing of UI State Changes. Four
out of our five participants chose not to use the debugger
that comes with browser devtools [43]–[45] to inspect the
web app’s behavior because, as one said, “it is interruptive.”
They opted for print statements instead because the browser
debugger would prevent them from seeing a bigger picture
of the execution without breakpoint pauses. The problem is
exacerbated in GUI apps as debuggers interrupt tracing the UI
states caused by event handlers, which to our participants was
the most important. Existing debuggers force users to step
through long, unrelated UI state changes with unavoidable
pauses, which is interruptive and, as one participant stated,
“does not simulate how the application naturally responds to a
triggered event.” Thus, our first design goal is non-interruptive
tracing of state changes, which liveness precisely supports.
D2: Connecting Output Changes to the Correspond-
ing Code. All five participants inserted print statements via
console.log() to verify the execution of event handlers and
determine the sequence of code execution, data changes, and
UI state changes. However, they had to switch among the UI,
code, and console to obtain such information. Console logs
also could not immediately show the order of code execution
and data changes unless carefully constructed and formatted.

1Formative study replication package: https://bit.ly/unfold-formative.

Participants wished to see the connection between code and
changes in data and GUI output, especially the order of these
changes, but they currently need to rely on manually sifting
through textual logs to obtain such information indirectly. Such
a need is indeed what liveness implies.

D3: Automated Event Triggering. All participants found it
tedious to manually trigger an event sequence repeatedly (e.g.,
via mouse clicks) when debugging event handlers, especially
when the debugging took numerous rounds of editing. Also,
changing one segment of event handling code might unex-
pectedly affect the behavior of another segment. When editing
code for event handlers, users yearned for a way to “preview
the effect of code changes on the execution of these handlers
before committing to such changes.” Live programming would
free users from repeating event inputs and restarting the
execution via its immediate feedback on code edits.

IV. DESIGN & IMPLEMENTATION OF UNFOLD

We implemented a prototype live programming environment
for web-based GUI applications called UNFOLD, which is an
extended version of Visual Studio Code [46] that displays the
user’s code, an iframe containing the live webpage rendered
from that code, and a UI States Timeline. UNFOLD is available
on GitHub2. We revisit the components of Fig. 1 and use
Fig. 2 to describe the design and implementation of UNFOLD
based on the three design goals (D1, D2, D3) derived from
our formative study in Sec. III.

A. Live Feedback on Code Edits

UNFOLD provides immediate feedback on how a code
change affects the application’s behavior whenever that change
is saved, which supports both D1: Non-interruptive Tracing
of UI State Changes and D3: Automated Event Triggering.
Furthermore, if the user has unsaved changes, UNFOLD re-
minds them of the mismatch between code and output via the
UI-to-Code Connector Labels (Sec. IV-C), the color of which
changes from the usual blue to dark brown to indicate that the
code and output is out of sync.

Liveness is enabled via event recording. Indeed, the user
can interact with their web app’s UI in the iframe through
mouse clicks as usual, and UNFOLD will automatically record
these clicks and replay them each time the code is changed
and saved. UNFOLD records and replays one event sequence
at a time to visualize the UI states created by that sequence,
which is displayed in the UI States Timeline (Sec. IV-B). To
input a new sequence, the user clicks the “Clear” button above
the UI States Timeline (Fig. 3).

Our prototype records only click events because they are the
most common in GUIs, but our implementation allows easy
extensions to other DOM events for record-replay. UNFOLD
captures all click events occurred within the rendered web
app at the right of the interface (the blue rectangle in Fig. 2)
and the event targets. To auto-replay the recorded events,
UNFOLD uses a “Headless Debugger” (Fig. 2), which consists

2Artifact: https://github.com/rlisahuang/unfold-tool

309

Fig. 2. Architecture of UNFOLD: the recorded click events (and the targets
on which they occurred) and the HTML file of the application are passed to a
“Headless Debugger” for obtaining all the UI states and connector labels info
for visualization. The “Headless Debugger” consists of a headless Chrome
instance for rendering the HTML and the Chrome debugger protocol that
simulates the events in the headless Chrome.

Fig. 3. A zoomed-in view of the UI States Timeline in Fig. 1-A: The Timeline
shows all UI states created by each recorded click event. (a) Each state can be
expanded to see details; (b) an arrow connects the starting and ending states
caused by this click event; (c) shows an intermediate UI state with a label
(1), which also appears in the IDE over the line of code that caused this state
change (see Fig. 1).

of the Chrome debugger protocol [43] and a headless Chrome
instance. Specifically, users interact with the app via the
iframe in UNFOLD, which is further connected to a headless
Chrome instance in the background that renders the same app
and obtains information following the procedure below. First,
to obtain event target information for replaying each event,
UNFOLD calculates the CSS selector of the event target by
tracing down the DOM tree of the web app. This approach
allows us to replay events without relying on the dimensions
of the web app or the resolution of the computer screen. Then,
it sets one breakpoint for each event via the Chrome debugger
protocol [43]. Finally, it simulates the event on the target via
the headless Chrome with the debugger enabled and records
related runtime information (more in Sec. IV-B).

B. UI States Timeline

Fig. 3 zooms in on the UI States Timeline from Fig. 1-A,
which implements D1: Non-interruptive Tracing of UI State
Changes. After the user clicks on the web app, whenever there
is a visual change to the entire UI, a UI state is created. As
such, the UI States Timeline shows the starting UI state and
the subsequent UI states that have been created since the click
event in the order of time. The user can further select a UI
state in the timeline to see its larger view. For example, in
Fig. 1, the last UI state in the timeline is selected, with its
larger view projected in UNFOLD.

UNFOLD records snapshots of UI states by pausing execu-
tion at each click event handler and single-stepping with the
Chrome debugger protocol through every line of the handler,
including nested function calls. Every time the debugger is
paused (due to the previously set event breakpoints described

in Sec. IV-A), UNFOLD captures the outerHTML and a full UI
screenshot of the web app as displayed in UNFOLD’s iframe
viewport (to match what users see). Then it diffs consecutive
screenshots on the pixel level and discards duplicates (which
indicates that this line of code did not change the UI in a
visible way). This also means that UNFOLD does not capture
off-screen changes. At the end of the click handler, all distinct
screenshots appear as separate UI states created by running
that handler and rendered in the UI States Timeline. When a
UI state in the timeline is selected, its larger view is rendered
via the corresponding outerHTML to enable interactions. If
a line of code runs an animation (e.g., fade-in), then it will
record the UI state at the start and end of that animation.
Note that if the click handler runs many lines of code, this
approach can become slow (due to the single-stepping), and
we have not yet optimized for performance; but in practice,
developers often write click handlers to be short-running so
that the UI updates quickly to foster interactivity [47].

Our implementation may seem similar to the MutationOb-
server API that detects DOM changes. However, MutationOb-
server constantly observes changes beyond the visual changes
and would be an overkill for our case. More importantly,
our approach reports both the existence and the lack of
changes more intuitively by capturing all (or the lack of) UI
changes occurring as the click event handler executes through
screenshot-diffing.

Above the sequence of UI states in Fig. 3, an arrow (Fig. 3-
b) is shown for each click event – the arrow spans all UI states
that the UI passes through when that event is handled. In this
example it shows the starting UI state of the webpage (labeled
with a (0)), the pop-up modal dialog appearing (state (1)), and
then the background of the page darkening (state (2)). Event
arrows are blue when they start and end in different-looking
UI states, and orange otherwise, which shows that the recorded
event did not visibly change the UI.

Our formative study participants (Sec. III) all found print
statements to be useful. Thus, in addition to inspecting UI
states in this timeline, UNFOLD allows the user to also use
console print logging for inspecting internal program state. But
instead of logging to a separate console, UNFOLD embeds the
logs in the GUI so that each log output results in a visible UI
state change, thus enabling users to examine log output directly
within the UI States Timeline. This mechanism enables users
to reason about the sequence of internal data changes along
with visible UI changes together in one timeline.

C. UI-to-Code Connector Labels

The numbered circles shown on UI states (Fig. 3-c) visually
connect those UI states to code execution, which addresses
D2: Connecting Output Changes to the Corresponding Code.
Specifically, if the script that has led to the creation of the UI
states is in an open buffer, then all lines that have resulted
in UI changes will be annotated with the connector labels of
the corresponding UI states. They are blue if the code is in
sync with the visual information rendered by UNFOLD or dark
brown if there are unsaved changes.

310

The semantics of these numbered labels is defined as
follows: Suppose we have a UI state annotated with a label i,
and a line of code annotated with the same label. This means
two things: (1) right before the i-labeled line of code started
executing, the state of the UI was the one annotated with i−1
in the UI States Timeline; (2) right after the i-labeled line
of code finished executing, the state of the UI was the one
annotated with i in the timeline. These labels use numerical
ordering to visualize control flow in the source code at a glance
and connect them to UI state changes. Fig. 1 shows more
examples of labels next to lines of code.

To annotate code lines with their respective connector labels,
whenever the debugger is paused when replaying events,
besides capturing UI states (Sec. IV-B), UNFOLD also obtains
the line numbers of all statements on the call stack that are
from local scripts loaded along with the web application. It
then indexes the UI states and associates the recorded line
numbers with the UI state indices.

V. EVALUATION: COMPARATIVE USER STUDY

How does liveness affect debugging in GUI apps, includ-
ing locating and fixing bugs? How does live programming
compare to a traditional debugging paradigm in this setting?
To investigate these questions, we ran a within-subjects study
where each participant debugged two GUI applications using
UNFOLD and Firefox DevTools [44] in a randomized order,
and we collected task performance, debugging behavior, and
user impressions of each tool. This section summarizes our
evaluation study protocol; full details of the tasks and proce-
dure can be found in our replication package3.

Participants. We recruited 12 adults (6 female) with 1 to 15
years of JavaScript experience and 5 to 15 years of program-
ming experience via personal contacts, social media, and our
institution. There was no overlap between the formative and
comparative user study participants.

Tasks. Each participant debugged two GUI applications,
Memory Game (M) and Calculator (C)4, and Fig. 4 illustrates
these applications in UNFOLD. Each comes with two bugs:
one directly related to event-driven DOM/CSS manipulations,
a critical part of JavaScript event handling [33], and the other
caused by data changes. Here are the bugs by application (M
and C) labeled with bug type:
M1. [CSS] A card disappears when trying to flip it over.
M2. [Data] Off-by-one error to flip back a pair of flipped

cards.
C1. [DOM] Pressing any value key shows undefined.
C2. [Data] Pressing “=” after an operation makes no calcula-

tion.
The replication package details the location of each bug.

Conditions. Participants edited code in the VSCode IDE [46]
in the study with two different debugging setups on top:
live programming (UNFOLD) and Firefox DevTools [44]

3Evaluation replication package: https://bit.ly/unfold-evaluation.
4Modified from examples found in intermediate-level tutorials on JavaScript

event handling: bit.ly/uf-memory-game and bit.ly/uf-calculator, respectively.

Fig. 4. The look of applications in our user study displayed in UNFOLD:
Memory Game (left) and Calculator (right).

(CONTROL). Given two setups and two applications, we
randomized the order of the setups and the applications to
reduce learning effects, so we had four groups. We randomly
assigned the 12 participants to groups while maintaining even
group sizes (three participants each).

Procedure. Participants did the tasks via video conferencing.
At the beginning of each task (application), we gave a 10-
minute tutorial on the debugging setup using the same tutorial
code and allowed them to ask clarifying questions. We told
them two expected behaviors of the respective application (that
correspond to the bugs listed in “Tasks”) but not whether they
were buggy. They then had 30 minutes to locate and fix the
two bugs in their desired order. They were allowed to look up
API documentation, encouraged to think aloud, and required
to tell us when they located or fixed a bug. We stopped the
timer for the application when they either asked to move on
or used up all 30 minutes. After debugging two applications,
we spent the final 15 minutes giving them a survey and a
semi-structured interview.

Quantitative Data. We recorded screencast videos of each
session and measured (1) duration and (2) success of both
locating and fixing bugs by reviewing the recordings. We
measured the time to locate a bug as the duration from the
start of working on an app or the end of locating/fixing
the previous bug until the participant said they found it and
objectively did so based on the experimenter’s judgment, or
the time was up. Specifically, we counted the timestamp when
participants located a bug by them correctly identifying the
line(s) that caused it and verbally informing experimenter of
correct location and cause. Participants who failed to locate
any bug were marked as having taken 30 minutes (total time
allowed for an application). Similarly, we measured the time
of fixing a bug as the duration from the end of locating the
bug, if any, until the participant said they fixed it or time was
up. Finally, we marked that a participant succeeded in locating
bugs in one app if both bugs were correctly located, and that
they succeeded in fixing bugs if both bugs were correctly
located and fixed.

Qualitative Data. We captured participants’ debugging be-
havior via video recordings of the study and our notes. We
recorded participant quotes during the study and interview. We
also obtained open-ended responses and Likert-scale ratings on
features of UNFOLD from the survey we gave right after the
tasks were done. One author assembled the behavioral findings

311

into groups using category analysis [48], and coded the quotes
and responses using thematic analysis [49].
Study Limitations. First, although we recruited participants
from a variety of backgrounds with a broad range of pro-
gramming experience, there were only 12 participants, who
might not be representative enough, and whose self-reported
programming experience might have biased the study results.
Second, there were only two small GUI apps used in our
study, and we only compared UNFOLD to one traditional
debugging approach (Firefox DevTools). Thus, we do not
know how well this technique generalizes to larger, more
complex web applications that run in production environments.
As such, our study findings should be viewed as an early step
towards evaluating the effects of live programming for GUI
applications or implementations of future live programming
tools for this domain.

VI. RESULTS

A. Quantative Results: Effectiveness on Debugging

To investigate how live programming affects debugging GUI
applications, we compared the success and duration of (1)
locating bugs and (2) fixing bugs across both settings in both
tasks. We report these quantitative results below.
While two participants failed to locate bugs in the CON-
TROL condition, only one failed with UNFOLD. In Memory
Game, five out of six participants located all bugs in UNFOLD
and six did so in the CONTROL condition. In Calculator, six
participants located all bugs in UNFOLD and four out of six did
so in CONTROL. The differences in results are not statistically
significant according to Fisher’s exact test. However, partici-
pants who failed to locate bugs in each respective condition
presented different behavior. When using CONTROL, P9 and
P12 who failed to locate bugs indeed spent all the task time on
localization. In contrary, P8 who failed to locate bugs within
task time when using UNFOLD spent half of the task time just
annotating the code line by line, doing little relevant to finding
bugs, and only starting the localization task when prompted
by the experimenter.
Participants located bugs significantly faster with UNFOLD
in Calculator. Fig. 5 shows the duration of locating bugs by
application and debugging setup. Since participants were given
30 minutes to work on each application, including locating and
fixing bugs, the maximum time one could spend locating bugs
was 30 minutes. Using a Wilcoxon signed-rank test on median
values, we found that participants with UNFOLD located bugs
significantly faster in Calculator, by 15.7 minutes (p = .036),
but only marginally faster in Memory Game (p = .562), by
0.9 minutes.
Regardless of the condition, participants struggled to fix
bugs. We did not observe any difference in the success or
duration of fixing bugs across the conditions. In Memory
Game, three out of six participants fixed all bugs in UNFOLD,
and three out of six did so in the CONTROL condition. In
Calculator, three out of six participants fixed all bugs in
UNFOLD, and two out of six did so in CONTROL. Fisher’s

exact test did not show any significant difference caused by the
debugging setup in the success of fixing all bugs. Comparing
the duration of those who eventually succeeded in fixing the
bugs, we found through median values that participants using
UNFOLD spent 3.5 minutes more fixing bugs in Memory Game
but 3 minutes less in Calculator than those with CONTROL.
The sample sizes were too small (all ≤ 3) to conduct statistical
tests and conclude any effects.

B. Qualitative Results: Debugging Strategies
Through video recordings and study notes, we derived

the following qualitative insights on participants’ debugging
strategies affected by the tool condition.
When using UNFOLD, participants relied on runtime infor-
mation more during debugging. With UNFOLD, participants
used one event sequence as the input for liveness to get runtime
information and see how their edits continuously affected the
runtime execution. For example, P5 inspected the UI States
Timeline to find out intermediate UI states that diverged
from their expectations, used the UI-to-Code Connector Labels
to locate the corresponding code in the editor, edited the
code, and checked the updated UI States Timeline to confirm
their hypothesis about the bug. Liveness further helped P1
and P7 realize some code they had added was unnecessary
and wrong, with P7 commented, “the [UI-to-code connector
labels] indicate that the code I added is problematic... I im-
mediately see the problem.” In contrast, although participants
also interacted with the application to test their changes during
debugging when in CONTROL, they focused more on reading
and reasoning about code than interacting with the application.
Notably, P3 successfully located and fixed all the bugs when
in CONTROL, but did not do so via using any console logs,
debugger, or web inspector at all, entirely by reading code
and reasoning. This might be due to the fact that the cost of
incremental testing is relatively high in our CONTROL imple-
mentation: it requires hard-reloading the application whenever
the code changes through a combination of keyboard shortcuts.
Such observations, although not surprising, show that our
implementation of liveness in UNFOLD is reliable enough for
programmers to continuously obtain runtime information.
When using UNFOLD, participants lacked mechanisms for
deeper inspection of the visual state. We observed that,
besides the understanding of the runtime behavior, deeper
inspection of an app’s visual state is also critical for resolving
its bugs. In the study, participants could use the web inspector
for directly inspecting the visual state when in CONTROL, but
they had to log such information to the UI states timeline
when using UNFOLD, which might not work well for deeper
inspection. Particularly, the Memory Game task had one bug
in setting CSS properties. P9 and P12, who located the bug
using UNFOLD but failed to fix it, commented that the issue
was not easily discoverable even with runtime information and
wished they could directly inspect the visual state. P6 used
logs in UNFOLD heavily for getting information about visual
properties, causing a clutter in the UI states timeline and infor-
mation overload. Meanwhile, participants when in CONTROL

312

Fig. 5. Duration of locating bugs by application and setup. The “X” marks
represent raw data points. The only overlapping data points (two) are at the
upper left corner of the plot for Calculator (right). The center lines show the
median values. The dashed horizontal line represents the time limit to one
application (1800 seconds = 30 minutes).

could easily use the web inspector for examining/adjusting
details of the DOM and CSS properties. For the same bug in
Memory Game, P5, P6, and P11 used the web inspector when
in CONTROL and found it quickly.

In addition to the observations about using UNFOLD, we
also had findings general to live programming within the
context of debugging GUI applications.

Even with liveness, participants started comprehension
with a significant amount of code reading. In both con-
ditions, when first starting the task with unfamiliar code, all
participants read the static code for comprehension without
interacting with the application. However, when using UN-
FOLD, half of the participants (P1, P2, P4, P7, P10, P11) would
interact with the application briefly after reading the code to
obtain information about the execution. P7 interacted with the
application immediately after skimming the code and deemed
the live information “very straightforward” for confirming
their understanding. P11 further used UI-to-Code Connector
Labels and logs to confirm parts of the execution and narrow
down the search for bugs. In contrast, in CONTROL, almost
all participants avoided interactions to the application when
familiarizing themselves with the code, relying on reading
static code only.

Full liveness is unnecessary for testing when programmers
focus on final state only. For participants who were able
to fix bugs, when they moved onto testing their edits more
thoroughly, they used more than one event sequences. With
UNFOLD, participants (P1, P2, P3, P7, P10) always cleared
existing event inputs and provided new ones to the debugger,
focusing on only the final state but not the intermediate UI
states caused by the events. The unnecessary intermediate
states in fact caused UNFOLD to slow down and led to com-
plaints (P4, P5). In CONTROL, similarly, participants always
reloaded the whole application to test the program behavior in
full with different event input sequences.

TABLE I
LIKERT-SCALE USER PERCEPTIONS OF UNFOLD FEATURES FROM 1 -

“STRONGLY DISAGREE” TO 5 - “STRONGLY AGREE”. “AVG.” - AVERAGE,
“MDN.” - MEDIAN, “DIST.” - DISTRIBUTION.

Ease of use Helpfulness

Feature Avg. Mdn. Dist. Avg. Mdn. Dist.

Event Recording 4.67 5.0 4.83 5.0

Event Arrows 4.67 5.0 4.25 4.5

Connector Labels 4.25 4.5 4.33 4.0

Logging 4.08 4.0 4.17 5.0

Live Feedback 4.00 4.0 4.42 5.0

Overall 4.42 5.0 4.50 4.5

C. Users’ Perceptions of UNFOLD

Participants felt that UNFOLD reduces barriers to debug-
ging GUI applications. The left part of Table I shows the
ratings on how easy it was to use UNFOLD on a 5-point
Likert scale. Participants generally found it easy to use: all
ratings have averages and medians above 4 out of 5 (Strongly
Agree). They mentioned three particular aspects of UNFOLD
that ease debugging GUI apps.
Straightforward Interaction Flow. Participants found the
UNFOLD interface to be “very intuitive” (P2, P3). P1 es-
pecially liked “its simplicity,” and P2 appreciated the flat
learning curve.
Minimal Configuration Requirement. All participants found
that UNFOLD was “easy to setup,” required “[few] context
shifts” (P8), and picked up their “existing [work prac-
tice] . . . without [requiring] configuring what events to
record” (P2).
Minimal Distraction. Participants considered that features in
UNFOLD did not distract them much from debugging. Al-
though the UI-to-Code Connector Labels could be distracting
“when there [were] too many UI states” (P3, P9, P11), the
“ease of resetting” addressed this problem by clearing the
recorded events and states.

Participants deemed UNFOLD helpful for debugging GUI
applications. The right part of Table I shows participants’
ratings for UNFOLD’s helpfulness, also on a 5-point Likert
scale. Broadly speaking, participants found it helpful, espe-
cially “Event Recording” that received an average rating of
4.83 out of 5. Participants deemed UNFOLD helpful in two
specific ways.
UI States-to-Code Connections. 10 out of 12 participants
mentioned that UNFOLD helped them reason about the be-
havior of the invoked event handlers by visually showing
UI states and connecting the states to code execution. P8
especially appreciated the ability to “quickly understand the
effects of [their] actions.”
Live Feedback via Event Recording. Eight participants said
UNFOLD greatly helped them debug by automating recorded
events and providing live feedback upon code changes using

313

these events. P7 further commented that, when trying to
understand the effects of edits, they were able to “quickly
compare the difference in app behavior between the changes”
through the live feedback.

Participants yearned for more control over liveness in
UNFOLD. Participants also suggested possible improvements
to UNFOLD that allow them to: (1) inspect runtime data and
visual structure along with the UI states without logging (P2);
(2) filter uninteresting UI states and connector labels (P3,
P9, P10, P11); (3) examine UI components in detail in a UI
state (P6); and (4) adjust the granularity of information shown
(P11). The suggestions share a common theme: more control
over the granularity of liveness.

VII. DISCUSSION AND FUTURE WORK

How does liveness help debugging? Our findings show
that live programming helps programmers locate some GUI
application bugs faster. We seek to understand this observation
from our study, where the buggy code was not written by
the participants themselves. We first refer to the forward
reasoning theory [50], [51], which suggests that programmers
tend to first simulate and reason about code execution in
their head when locating bugs in unfamiliar code. Liveness
precisely provides such help for simulating code execution by
directly showing execution state changes to the programmer,
which could be used to validate their mental model for the
execution. Another possible explanation for the helpfulness
of live programming in locating bugs is that it enables rapid
edit-run cycles, which prior work suggests are frequent in
debugging [17]. Indeed, we observed that participants relied
on runtime information more during debugging when using
UNFOLD. Live programming supports rapid edit-run cycles
by automating program execution and continuously visualizing
program behavior in full.

We do see that live programming helps with locating bugs
more in some tasks than in the others. For example, one bug
in the Memory Game task was better resolved with direct
inspection of the visual structure than reasoning about the
runtime execution. This possibly explains why we observed a
significant speedup in locating bugs caused by live program-
ming only in Calculator but not in Memory Game. We thus
conclude that live programming helps debugging in situations
amenable to reasoning about runtime execution.

Liveness is suitable for locating bugs, but more help is
needed for fixing bugs. In our study, P9 and P12 located the
bugs in Memory Game using UNFOLD but did not know how
to fix them. There are two possible causes behind the failures:
(1) they were unfamiliar with the API calls that caused the
bugs, which could be addressed via searching documentation
and code examples but require more time and context switches;
(2) they had an expected UI state in mind but did not know
how to achieve it via code. Indeed, while live programming
may help understand code behavior and locate bugs, it cannot
suggest fixes. We believe that program synthesis is well-
suited for suggesting API usage and code edits. For example,

millions are using the GitHub Copilot synthesizer [52] to
obtain code suggestions within their IDE. Particularly for
reaching expected UI states, synthesis via direct manipulation
can also help and has been well-explored [53]–[55]. Still, an
open problem remains in validating the behavior of synthe-
sized code against the programmer’s expectation. Recent work
has observed the potential benefits of liveness for lowering
the cognitive load of validating AI-generated code [16]. We
believe that live programming, by showing correspondences
between execution state changes and the code, can provide
further help with understanding and refining the synthesized
repair suggestions. Future debuggers could help programmers
not only locate but also fix bugs by integrating aspects of live
programming and program synthesis.
To be live or not to be live? More investigation needed. Our
study reveals two interesting yet contradictory limitations of
live programming. First, live programming is sometimes not
live enough: if the user does not provide program inputs for it
to generate runtime information, they cannot benefit from live
programming at all. Indeed, participants in our study, even
when using UNFOLD, did not immediately use liveness for
understanding unfamiliar code at the very beginning of a task,
likely because interacting with the application (as program
input) was not their first reaction. Second, live programming
can be too live: if the user is not interested in intermediate run-
time states and their connections to the code, such information
can be too distracting. In our study, participants focused on
final state only when systematically testing their bug fixes,
and those using UNFOLD with live programming complained
about the unnecessary intermediate states in this setting and
wanted more control over liveness.

To alleviate these limitations, we believe different phases of
the programming workflow require different levels of liveness.
This connects with prior work [9] that different programmers
opt for different kinds of liveness at different points. Cus-
tomizable liveness is one way to address the limitations, as
four participants in the post-study interview suggested having
customizable display of intermediate program states. In addi-
tion to user-initiated customization, we further believe that live
programming environments could actively show the appropri-
ate levels of liveness at the right time. When the programmer
just started reading unfamiliar code, which is common for
debugging in collaborative settings, the environment could
auto-generate program inputs to encourage using liveness for
comprehension. When the programmer enters the final testing
phase, liveness could be reduced to showing final states only
upon different program inputs. The bigger challenge towards
enabling the above is detecting which phase the programmer is
in. Future live programming environments could optimize their
help and minimize distractions by detecting the programmer’s
workflow and self-adjusting the granularity of liveness.

VIII. CONCLUSION

In this work we first explored the design of a live program-
ming environment for debugging GUI applications through a
needfinding study. Then following design goals derived from

314

this study, we proposed UNFOLD, a prototype live program-
ming environment for debugging web-based GUI applications.
We evaluated UNFOLD in a within-subjects study with 12
participants, and found that liveness helped programmers
locate some kinds of GUI application bugs faster, encouraged
programmers to use runtime information for debugging, and
was deemed easy to use and helpful. Our findings can inform
opportunities for future live programming and debugging tools
in terms of adjustable liveness and support for fixing bugs.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
helpful comments and suggestions. This work was supported
in part by NSF grant 2107397.

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A Survey on
Software Fault Localization,” IEEE Transactions on Software Engineer-
ing, vol. 42, no. 8, pp. 707–740, Aug. 2016, conference Name: IEEE
Transactions on Software Engineering.

[2] D. Spinellis, “Modern debugging: the art of finding a needle in a
haystack,” Communications of the ACM, vol. 61, no. 11, pp. 124–134,
Oct. 2018. [Online]. Available: https://dl.acm.org/doi/10.1145/3186278

[3] L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline, and G. Venolia,
“Debugging Revisited: Toward Understanding the Debugging Needs of
Contemporary Software Developers,” in 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement, Oct.
2013, pp. 383–392, iSSN: 1949-3789.

[4] B. Myers, R. McDaniel, R. Miller, A. Ferrency, A. Faulring, B. Kyle,
A. Mickish, A. Klimovitski, and P. Doane, “The Amulet environment:
new models for effective user interface software development,” IEEE
Transactions on Software Engineering, vol. 23, no. 6, pp. 347–365, Jun.
1997, conference Name: IEEE Transactions on Software Engineering.

[5] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst, “Interactive record/replay
for web application debugging,” in Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology. St. Andrews
Scotland, United Kingdom: ACM, Oct. 2013, pp. 473–484.

[6] B. Victor, “Learnable Programming,”
http://worrydream.com/LearnableProgramming/, 2012.

[7] S. L. Tanimoto, “A perspective on the evolution of live programming,”
in 2013 1st International Workshop on Live Programming (LIVE), May
2013, pp. 31–34.

[8] C. M. Hancock, “Real-time programming and the big ideas of
computational literacy,” Thesis, Massachusetts Institute of Technology,
2003. [Online]. Available: https://dspace.mit.edu/handle/1721.1/61549

[9] S. Lerner, “Projection Boxes: On-the-Fly Reconfigurable Visualization
for Live Programming,” in Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’20. New York, NY,
USA: Association for Computing Machinery, 2020, pp. 1–7. [Online].
Available: https://doi.org/10.1145/3313831.3376494

[10] T. Lieber, J. R. Brandt, and R. C. Miller, “Addressing misconceptions
about code with always-on programming visualizations,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’14. New York, NY, USA: Association for
Computing Machinery, Apr. 2014, pp. 2481–2490. [Online]. Available:
https://doi.org/10.1145/2556288.2557409

[11] L. Cabrera, J. H. Maloney, and D. Weintrop, “Programs in the Palm
of your Hand: How Live Programming Shapes Children’s Interactions
with Physical Computing Devices,” in Proceedings of the 18th ACM
International Conference on Interaction Design and Children. Boise,
ID, USA: ACM, Jun. 2019, pp. 227–236.

[12] C. Zhao, I.-C. Shen, T. Fukusato, J. Kato, and T. Igarashi,
“ODEN: Live Programming for Neural Network Architecture Editing,”
in 27th International Conference on Intelligent User Interfaces,
ser. IUI ’22. New York, NY, USA: Association for Computing
Machinery, Mar. 2022, pp. 392–404. [Online]. Available: https:
//doi.org/10.1145/3490099.3511120

[13] R. A. DeLine, “Glinda: Supporting Data Science with Live Program-
ming, GUIs and a Domain-specific Language,” in Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. Yoko-
hama Japan: ACM, May 2021, pp. 1–11.

[14] R. DeLine and D. Fisher, “Supporting exploratory data analysis with
live programming,” in 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). Atlanta, GA: IEEE, Oct. 2015,
pp. 111–119.

[15] M. Campusano, A. Bergel, and J. Fabry, “Does live programming help
program comprehension?–A user study with Live Robot Programming,”
in Proceedings of the 7th International Workshop on Evaluation
and Usability of Programming Languages and Tools. Amsterdam,
Netherlands: ACM, Nov. 2016, p. 8 pages. [Online]. Available:
http://bergel.eu/MyPapers/Camp16-ComprehensionWithLRP.pdf

[16] K. Ferdowsi, R. L. Huang, M. B. James, N. Polikarpova, and S. Lerner,
“Validating ai-generated code with live programming,” in Proceedings
of the CHI Conference on Human Factors in Computing Systems, ser.
CHI ’24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3613904.3642495

[17] A. Alaboudi and T. D. LaToza, “Edit - Run Behavior in Programming
and Debugging,” in 2021 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), Oct. 2021, pp. 1–10.

[18] “Introduction to events - learn web development,” Feb 2023.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Learn/
JavaScript/Building blocks/Events

[19] S. L. Tanimoto, “VIVA: A visual language for image processing,”
Journal of Visual Languages & Computing, vol. 1, no. 2, pp. 127–139,
Jun. 1990.

[20] D. Rauch, P. Rein, S. Ramson, J. Lincke, and R. Hirschfeld,
“Babylonian-style Programming,” The Art, Science, and Engineering of
Programming, vol. 3, no. 3, pp. 9:1–9:39, Feb. 2019.

[21] C. Omar, I. Voysey, R. Chugh, and M. A. Hammer, “Live functional pro-
gramming with typed holes,” Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, pp. 1–32, Jan. 2019.

[22] X. Zhang and P. J. Guo, “DS.js: Turn Any Webpage into an Example-
Centric Live Programming Environment for Learning Data Science,”
in Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology. Québec City QC Canada: ACM, Oct. 2017,
pp. 691–702.

[23] E. Senft, M. Hagenow, R. Radwin, M. Zinn, M. Gleicher, and B. Mutlu,
“Situated Live Programming for Human-Robot Collaboration,” in The
34th Annual ACM Symposium on User Interface Software and Technol-
ogy. Virtual Event USA: ACM, Oct. 2021, pp. 613–625.

[24] R. L. Huang, K. Ferdowsi, A. Selvaraj, A. G. Soosai Raj, and S. Lerner,
“Investigating the Impact of Using a Live Programming Environment in
a CS1 Course,” in Proceedings of the 53rd ACM Technical Symposium
on Computer Science Education V. 1, ser. SIGCSE 2022. New York,
NY, USA: Association for Computing Machinery, Feb. 2022, pp. 495–
501.

[25] J. Kramer, J. Kurz, T. Karrer, and J. Borchers, “How live coding
affects developers’ coding behavior,” in 2014 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Jul. 2014, pp. 5–
8, iSSN: 1943-6106.

[26] C. Schuster and C. Flanagan, “Live Programming for Event-Based
Languages,” in Proceedings of the 2015 Reactive and Event-based
Languages and Systems Workshop, REBLS, vol. 15, 2015. [Online].
Available: https://users.soe.ucsc.edu/∼cormac/papers/15rebls.pdf

[27] R. Dey, “VSCode Live Server,” Sep. 2022. [Online]. Available:
https://github.com/ritwickdey/vscode-live-server

[28] ——, “VSCode Live Server++,” 2022. [Online]. Available: https:
//github.com/ritwickdey/vscode-live-server-plus-plus

[29] S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid, M. Moskal,
N. Tillmann, and J. Kato, “It’s alive! continuous feedback in UI
programming,” in Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’13.
New York, NY, USA: Association for Computing Machinery, Jun. 2013,
pp. 95–104.

[30] “Hot Reload — Vue Loader,” https://vue-loader.vuejs.org/guide/hot-
reload.html#state-preservation-rules, 2022.

[31] “react-refresh,” 2022. [Online]. Available: https://www.npmjs.com/
package/react-refresh

[32] J. Lincke, P. Rein, S. Ramson, R. Hirschfeld, M. Taeumel, and T. Felgen-
treff, “Designing a live development experience for web-components,”
in Proceedings of the 3rd ACM SIGPLAN International Workshop on
Programming Experience. Vancouver BC Canada: ACM, Oct. 2017,
pp. 28–35.

315

[33] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman, “Under-
standing JavaScript event-based interactions,” in Proceedings of the 36th
International Conference on Software Engineering. Hyderabad India:
ACM, May 2014, pp. 367–377.

[34] P.-Y. P. Chi, S.-P. Hu, and Y. Li, “Doppio: Tracking UI Flows and
Code Changes for App Development,” in Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. Montreal QC
Canada: ACM, Apr. 2018, pp. 1–13.

[35] P. Jiang, F. Sun, and H. Xia, “Log-it: Supporting Programming with
Interactive, Contextual, Structured, and Visual Logs,” in Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems
(CHI ’23). Hamburg, Germany: ACM, New York, NY, USA, 2023,
p. 16. [Online]. Available: https://doi.org/10.1145/3544548.3581403

[36] A. Alaboudi and T. D. Latoza, “Hypothesizer: A hypothesis-based
debugger to find and test debugging hypotheses,” in Proceedings of
the 36th Annual ACM Symposium on User Interface Software and
Technology, ser. UIST ’23. New York, NY, USA: Association for
Computing Machinery, 2023. [Online]. Available: https://doi.org/10.
1145/3586183.3606781

[37] S. Oney and B. Myers, “FireCrystal: Understanding interactive behaviors
in dynamic web pages,” in 2009 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), Sep. 2009, pp. 105–108.

[38] B. Burg, A. J. Ko, and M. D. Ernst, “Explaining Visual Changes in
Web Interfaces,” in Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology. Charlotte NC USA: ACM,
Nov. 2015, pp. 259–268.

[39] J. Hibschman and H. Zhang, “Unravel: Rapid Web Application Reverse
Engineering via Interaction Recording, Source Tracing, and Library
Detection,” in Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology, ser. UIST ’15. New York, NY, USA:
Association for Computing Machinery, Nov. 2015, pp. 270–279.

[40] ——, “Telescope: Fine-Tuned Discovery of Interactive Web UI Feature
Implementation,” in Proceedings of the 29th Annual Symposium on User
Interface Software and Technology, ser. UIST ’16. New York, NY, USA:
Association for Computing Machinery, Oct. 2016, pp. 233–245.

[41] W. Wang, G. Fraser, M. Bobbadi, B. T. Tabarsi, T. Barnes, C. Martens,
S. Jiao, and T. Price, “Pinpoint: A Record, Replay, and Extract System
to Support Code Comprehension and Reuse,” in 2022 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC). IEEE
Computer Society, Sep. 2022, pp. 1–10.

[42] H. Beyer and K. Holtzblatt, Contextual Design: Defining Customer-
Centered Systems. San Francisco, Calif: Morgan Kaufmann, 1998.

[43] C. Developers, “Chrome DevTools - Overview,” 2022. [Online].
Available: https://developer.chrome.com/docs/devtools/overview/

[44] “Firefox DevTools User Docs — Firefox Source Docs documentation,”
https://firefox-source-docs.mozilla.org/devtools-user/, 2022.

[45] A. Inc, “Tools - Safari,” https://developer.apple.com/safari/tools/, 2022.
[46] “Visual studio code - code editing.” 2023. [Online]. Available:

https://code.visualstudio.com/
[47] J. Nielsen, “Iterative user-interface design,” Computer, vol. 26, no. 11,

pp. 32–41, Nov. 1993, conference Name: Computer.
[48] D. Yanow, “Qualitative-interpretive methods in policy research,” in

Handbook of Public Policy Analysis. Routledge, 2017, pp. 431–442.
[49] V. Braun and V. Clarke, “Using thematic analysis in psychology,”

Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–101, Jan. 2006.
[50] I. Katz and J. Anderson, “Debugging: An Analysis of Bug-Location

Strategies,” Human-Computer Interaction, vol. 3, no. 4, pp. 351–399,
Dec. 1987. [Online]. Available: http://www.tandfonline.com/doi/abs/10.
1207/s15327051hci0304 2

[51] P. Romero, B. du Boulay, R. Cox, R. Lutz, and S. Bryant,
“Debugging strategies and tactics in a multi-representation software
environment,” International Journal of Human-Computer Studies,
vol. 65, no. 12, pp. 992–1009, Dec. 2007. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1071581907001000

[52] “GitHub Copilot · Your AI pair programmer,”
https://github.com/features/copilot, 2022.

[53] C. Schuster and C. Flanagan, “Live programming by example: using
direct manipulation for live program synthesis,” in LIVE Workshop,
2016. [Online]. Available: https://chris-schuster.net/live16/live16-lpbe.
pdf

[54] B. Hempel and R. Chugh, “Maniposynth: Bimodal Tangible Functional
Programming,” Tech. Rep., Jun. 2022.

[55] B. Hempel, J. Lubin, and R. Chugh, “Sketch-n-Sketch: Output-Directed
Programming for SVG,” in Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology, Oct. 2019, pp.
281–292.

316

