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ABSTRACT

A common and intuitive user-synthesizer interaction model (IM) is

Programming-by-Example, where the user provides output exam-

ples to specify the desired program’s behavior on the inputs. How-

ever, providing large examples can be tedious. This paper presents

Programming by Partial Examples (PBPE), a new IM where the user

can provide partial output specifications which are completed by

the synthesizer. We pose the following research question: Would

a PBPE synthesizer be more usable than one that requires full out-

puts? A pilot study (N=4) on PopPy, a synthesizer that adopts PBPE,

shows that it can be more usable because (1) partial output specifi-

cations were used extensively and did not increase confusion, and

(2) users spent less time per synthesis call providing specifications

with PopPy. Results from the pilot study also suggest refinement to

the study design.

1 INTRODUCTION

Programming-by-Example (PBE) is a program synthesis paradigm

where the user describes the intended program behavior through

a set of input-output examples (“specifications” ). The goal for the

synthesizer is to find programs that successfully transform the

inputs in each example into the corresponding output. Compared

to other synthesis techniques, PBE is relatively low threshold [9]

as it provides a more intuitive way of expressing user intent and

does not require user understanding of the synthesizer.

User Driven Interaction [4] is the most common and intuitive

user interaction model (IM) for PBE, where the user creates input-

output examples and examines the program produced by the syn-

thesizer. While this is a great IM, it does not scale well in the size

of inputs and outputs, as manually constructing (large) examples

can be time-consuming and error-prone [6]. Live Programming

by Example (LPBE) synthesizers [3, 12, 13] incorporate Live Pro-

gramming, a paradigm that constantly displays runtime values of a

program, to mitigate the issue by reusing existing runtime values

from the interface as inputs for each example, so that the user only

needs to provide the outputs. Although such tools reduce the quan-

tity of examples the user needs to provide, they do not assist users

with writing complete, long outputs.

The requirement of complete specifications and the typo-prone

nature of constructing long examples could exacerbate the user-

synthesizer gap [3]: it is beyond the synthesizer’s ability to dis-

tinguish specifications with typos from the rest and typos could

lead to incomprehensible programs or synthesis failures, whereas

the user might overestimate the synthesizer’s ability to detect and

recover from typos in specifications. As Ferdowsifard et al. [3]

found in their user study on SnipPy, an LPBE synthesizer targeting

general programming, incorrect mental models of the synthesizer
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restrained users from trying to understand the synthesized code,

let alone confirming whether the synthesis results satisfied their

input-output specifications.

Typos exist not only in program synthesis specifications but in

all sorts of human inputs to computing systems. To address the

problem, word completion was developed to complete the user

input with a few suggestions as the user types in the initial part of

a query [5] and can reduce the number of keystrokes and increase

user engagement with the input system [1, 7]. This paper explores

the possibility of leveraging word completion in PBE such that the

synthesizer could accept and complete partial examples.

Prior studies reveal that partial examples might help bridge the

user-synthesizer gap in PBE. Peleg and Polikarpova [11] devel-

oped a best-effort synthesis paradigm, Bester, that could return

partially-valid programs using only the flawless part of the user-

written specifications, and they found that users used such results

for comprehension even when they were not completely valid. In

fact, considerations for incorporating such user-synthesizer IMs

based on partial input-output specifications into PBE tools have

been already offered [8]. Wang et al. [14] also adopted partial input-

output specifications in Viser, a synthesizer for data visualizations

and corresponding scripts, by allowing users to specify part of the

expected visualization outputs. Similarly, Wrex [2] synthesizes

data wrangling code that applies to all rows of a data frame using

a small number of example rows (part of the data frame), though

its IM requires providing more example rows to synthesize differ-

ent programs. As Viser and Wrex are both domain-specific PBE

tools for non-programmers, what remains to be explored is whether

a similar IM for general programming synthesis like SnipPy [3]

would improve users’ understanding and use of the synthesizer.

In this paper, we present Programming by Partial Examples

(PBPE), a new IM where the user can provide partial output speci-

fications which are completed by the synthesizer. We investigate

whether a PBPE synthesizer could improve the specifications writ-

ing process and hence the overall usability of the synthesizer: Would

a PBPE synthesizer be more usable than one that requires full outputs?

We implemented PBPE in PopPy, an extension to SnipPy [3] that

accepts partial output specifications. Through a between-subjects

pilot study with four participants, we compared PopPy to the same

tool without the partial output specification feature, and demon-

strate that partial output specifications were used extensively and

did not increase confusion, and users spent less time per synthesis

call writing examples with partial output specifications. Our pilot

study also suggests refinement to the design of a future large-scale

study, including a quantitative assessment during recruitment and

non-remote manipulation of the programming environment.

The main contributions of this paper are:



(1) A novel user-synthesizer interaction model called Program-

ming by Partial Examples, where the synthesizer accepts and

completes partial output specifications written by the user.

(2) An implementation of this IM in a tool called PopPy, which to

our knowledge is the first attempt to support partial outputs

in the specifications for general-purpose inductive synthesis.

(3) A pilot study of PopPy on 4 programmers, which found that

PopPy was extensively used, did not increase confusion, and

reduced time spent in writing examples per synthesis call.

2 POPPY

2.1 Example Usage Scenario

A programmer named Alex is cleaning up a text file using Python,

as a part of which they need to remove extra spaces and fix capi-

talization in each sentence in the file, e.g. going from “A strANGE

sTRING” to “a strange string”. Alex is an experienced program-

mer, so they quickly think of a solution: Split each sentence by

whitespace, join the words back with single spaces, and make each

word lowercase in the process. Unsure of how to do so in Python, a

language new to them, Alex turns to PopPy to write the program.

They define a function cleanup with one parameter line and call

it using the sentence above as the argument. They immediately see

Projection Boxes appear in the function. Alex first needs to split the

line argument into words, so they write words = . Since they don’t

know how to do so in Python, they write ?? instead of code (Fig. 1a).

This places their cursor inside the box, where they can now enter

the value words should have instead of the code. Alex is worried

about mistyping one of the oddly capitalized words, so they write

the list and its first element but leave the rest as · · · (Fig. 1b).

Once they press Enter they see Fig. 1c: the specification was

accepted and PopPy is looking for matching programs. After a few

seconds, they see that the message has changed, and the box is

updated with the output in Fig. 1d. This is the output Alex had in

mind, so they press Enter once more to accept it. This inserts the

matching code and returns the cursor to the editor (Fig. 1f).

To finish this function definition, Alex needs to put single spaces

between each word and turn them all lowercase, so they turn to

PopPy again and see if it can do both in one line. After writing

return ??, they provide a partial output again (Fig. 1h); however,

the first available output ’a strange string’ that appears in the

box has an extra space and is not what they had in mind. They

press → to see the next output and after a few outputs, they reach

their goal ’a strange string’. They again press Enter to accept it

and get the final program:

def c l e a n u p ( l i n e ) :

words = l i n e . s p l i t ( )

return " ␣ " . j o i n ( words ) . lower ( )

2.2 Implementation

We implemented PopPy as an extension of SnipPy [3], which pro-

vided the framework for small-step live programming by example.

To implement the new IM, we extended the user interface with the

ability to display and select outputs, and extended the synthesizer

with an optional new predicate for partial synthesis.

2.2.1 Enumerative Synthesis with Partial Specifications. A detailed

description of the synthesis algorithm is beyond the scope of this

paper. In brief, in regular Programming-by-Example using Bottom-

up Enumerative Synthesis with Observational Equivalence, the

synthesizer is presented with a list of input-output examples. It then

enumerates programs and evaluates each program using the input

values of each example. Once a program is found that evaluates

to the output value for each example, the synthesizer outputs that

program and exits. More generally, the synthesizer can be said to

evaluate each program using a predicate and exits if the predicate

evaluates to 𝑡𝑟𝑢𝑒 .

We modified this algorithm in two notable ways. The first was

to redefine the predicate from an exact match on each output, to

(1) A regular expression match on strings containing “· · · ”, with

each “· · · ” in the string replaced with the “.+” token,

(2) A list match on lists containing the Python Ellipsis object,

where each Ellipsis was matched against one or more arbi-

trary elements, and

(3) An exact match as before otherwise.

Observational Equivalence guarantees that for an exact match pred-

icate, the synthesizer will only find a single solution. This partial

predicate, however, can be satisfied with multiple programs that are

distinct under OE and therefore may be synthesized. This allowed

us to also modify the synthesizer’s exit condition. Previously, the

synthesizer exited after finding a solution. With PopPy, we instead

continue synthesis, outputting every solution until the user inter-

face terminates the synthesizer or we reach programs of height 4,

which (similar to SnipPy) we consider beyond PopPy’s scope.

2.2.2 User Interface. To enable the interaction model described

in Sec. 2.1, we converted the existing SnipPy interface with the

ability to check for invalid specifications to prevent spurious failed

synthesis calls, communicate with the synthesizer, and present new

outputs interactively.

To check for invalid specifications, rather than sending the syn-

thesis specification directly to the synthesizer, we first check that

each value evaluates correctly in Python, and that it is of a type

that the synthesizer supports. If there is an error or an invalid

type, we present this as an error message to the user while keep-

ing their specification (Fig. 1g), so that they may modify it before

resubmitting.

Once the user’s specification is accepted and synthesis starts, we

fill the Projection Box column for the user’s output with the message

“synthesizing”, and similarly add a message in code (Fig. 1c). Once a

solution is found, the code message is replaced and the box column

is updated with the values that the solution evaluates to in each

example (Fig. 1d). Other solutions are kept in the background, and

the user can move between the available outputs using the ←
and → keys on the keyboard. If they reach the end of the list, we

again use the “synthesizing” message to indicate that the end of

the list is reached. If they try to go beyond this, a message appears

stating that it is the end of available outputs.

If the user waits for more than 7 seconds at this output, we

consider it a timeout and terminate the synthesizer to stay below

a disruptive interruption, which was also the original timeout for

SnipPy [10]. If the synthesizer exits or is terminated, the code
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Figure 1: Solving the example scenario in PopPy. (a)-(f) shows synthesizing the first step with a partial list specification. (g)

displays an error for an invalid specification. (h) shows the partial specification for strings.

message changes to Fig. 1e but the user is still able to move between

the available outputs.

The user can stop the synthesis process at any point by pressing

Esc . Once there is at least one output available, the user can select

the current output by pressing Enter . After selecting an output,

we insert the matching program in the user’s code, and move the

cursor back to the editor (Fig. 1f).

3 AN EXPLORATORY EVALUATION

Can PBPE help users: (a) write output specifications faster, (b) pre-

vent typos in specifications, and (c) use the synthesizer more? To

take initial steps towards answering these questions, we conducted

a small between-subjects pilot study comparing PopPy to the same

tool without the partial output specification feature.

We recruited 4 participants (3 male, 1 female) among the gradu-

ate students in the Computer Science and Engineering department.

We asked potential participants to self-rate their Python proficiency

on a Likert scale of 1 (Not at all familiar) to 5 (Extremely familiar),

and selected those who rated themselves between 2 and 4 (inclu-

sive). We then randomly assigned the participants into either the

Experimental (using partial specifications) or Control (using com-

plete specifications) group, with the constraint that we have exactly

2 participants per group.

3.1 Procedure

We conducted the studies remotely through a Zoom session, where

an investigator shared their screen (with PopPy open on the screen)

and participants used the tool through Zoom’s remote control fea-

ture.

After a brief introduction to the study, each participant was asked

to watch an approximately 5 minute tutorial video (see Sec. 3.2).

This was followed by a loosely guided section where the participants

were encouraged to replicate the tutorial steps and experiment with

the tool. This was necessary to address any issues or questions users

might have, and for them to get used to a slight delay in typing

caused by Zoom’s remote control.

Once the user declared that they were ready, they were presented

with the first programming task. Once they declared that they

had finished the first task, they were presented with the second,

following the exact same procedure.

After finishing the second task, the participants were asked to

complete a short survey involving long-answer questions about

their experience with the tool and suggestions for improvements.

This was optionally followed by follow-up questions by the investi-

gator to clarify written responses.

3.2 Tutorial

Since PopPy requires instructions for productive use, we prepared

a tutorial video demonstrating Projection Boxes using simple

code examples, and explaining PopPy with and without partial

output specifications using the task described in Sec. 2.1. We then

edited the video to create two versions, one containing a partial

specification example, and one with only complete specifications.

The two videos were identical aside from this edit.

3.3 Tasks

Each participant solved two string and list processing tasks in

Python that could be solved within 15 minutes. The tasks are:

• Reverse1
: Reverse the words; keep the punctuation at the end.

• Addition2
: Compute an addition expression given as a string.

3.4 Data Collection

Qualitative data for the pilot was collected by the post-study survey

containing the following questions:

(1) In your own words, describe what you did today?

(2) Was the tool you used today useful? If so, how was it useful?

(3) Was the tool you used today confusing? If so, how was it

confusing?

(4) Do you have any suggestions on how to improve the tool

you used today?

We also collected quantitative data by recording timestamped

logs of various interactions with PopPy, including each edit to the

code, each specification sent to the synthesizer, and each result

found by the synthesizer (including failed synthesis calls).

1
http://shorturl.at/cyV05

2
http://shorturl.at/pAHK2

3
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3.5 Data Analysis

We used the recorded quantitative data to extract three pieces of

information:

Time Spent on Providing Examples. measured by the timestamp

difference between when the user typed ?? and when they sent the

specification to the synthesizer, excluding cases where they quit

without submitting the specification.

Number of Synthesized Requests. counted directly from the logs.

This was further subdivided into “Successful” calls where the user

accepted a solution, “Discontinued” where the synthesizer found so-

lutions but the user quit without accepting any, and “Failed” where

the synthesizer failed to find any solutions for the specification.

Percentage of Synthesized Code. measured by the percentage of

tokens in the final code matching exactly to the output of a synthesis

call from that code’s file, divided by the total number of tokens

added to the file by the user (excluding existing code boilerplate).

Since this was a small pilot study, we did not run any statistical

analysis on the quantitative data, but visualizations of these can be

found in Sec. 4.

3.6 Limitations

The main limitation of our pilot study is its scale. Although it

was meant to refine the design of PopPy and of the main study,

with only four participants from a limited pool, we cannot make

any rigorous claims about the usability of PopPy’s partial output

specification feature. The small scale also resulted in high variance

in participants’ Python proficiency, the self-report nature of which

is already inaccurate.

Also, participants solved two small programming tasks and used

PopPy for less than 30 minutes; a more ecologically-valid study

would be to have programmers use PopPy to solve more realistic

problems with extended durations. As such, we did not observe

cases of typos during the study (more in Sec. 4) and could not verify

our hypothesis that PopPy could reduce typos.

4 RESULTS

This section reports the study results of individual subjects: S1 and

S2 used PopPy with partial specifications, while S3 and S4 used

PopPy with complete specifications only. All 4 subjects solved the

programming tasks with some use of the synthesizer except for S4,

who did not use the synthesizer for task Addition.

4.1 Time Spent on Providing Examples

Fig. 2 presents the distribution of time spent on providing examples

per synthesis request of each subject by task. Overall, participants

using the partial specifications-enabled synthesizer spent less time

providing examples than participants using the synthesizer that

requires complete specifications.

4.2 Using the Synthesizer

Fig. 3 illustrates the number of synthesis requests each participants

made per task and the breakdown of the requests. The distribution

of percentages of synthesized tokens in each participant’s final

solution per task (Fig. 4) resembles that of Fig. 3.

Figure 2: Time (seconds) spent on providing examples per

synthesis request.

Figure 3: Number of synthesis requests per task.

Figure 4: Percentage of synthesized tokens in the final solu-

tion.

Although less definitive, participants made more synthesis re-

quests when allowed to write partial specifications. We also ex-

amined the Failed requests manually and found no typo-induced

synthesis failures; all the failures were led by requests beyond the

synthesizer’s abilities.

For participants using PopPy with partial specifications, we cal-

culated the percentages of synthesis requests using partial specifi-

cations per task. S1 used partial specifications in 80% and 71.43%

of their synthesis requests in tasks Reverse and Addition, respec-

tively, while S2 used partial specifications 100% of the time.

4.3 Qualitative Feedback

All participants described what they did in the study accurately. All

found the synthesizer to be useful; 3 out of 4 participants considered
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the synthesizer as a convenient lookup for built-in functions. We

received no comments specifically on how examples were provided.

Regarding the confusing aspects of the tool, 2 participants ex-

pressed frustration with synthesizing the summation function in

task Addition, which is not supported by PopPy, while 1 participant

worried about potential frustration caused by synthesis failures in

general. We found no complaints about writing specifications.

5 DISCUSSION

Through a pilot study, we explored the prospects of PBPE in speed-

ing up specifications writing, preventing typos, and encouraging

using the synthesizer. Although the study was small-scale and the

data were not conclusive, our results indicated that PBPE would

be preferred when available, make writing specifications faster,

and increase the use of the synthesizer. All participants found the

tool (not just the partial examples feature) useful particularly for

library function lookup. No participants expressed concern with

the feature or writing specifications in general, though there was

frustration with the abilities of the synthesizer.

Contrary to our expectations, we observed no typos in the study.

Kalfaoğlu and Stafford [6] suggested that typing errors are foreshad-

owed by a breakdown in performance. It is possible that we failed to

observe typos in writing specifications because the programming

tasks were too small and the intervention was too short to induce

such a breakdown. Another possibility is that the delay caused by

Zoom’s remote control feature forced the participants to type more

slowly and meticulously than they normally would and thus re-

duced the likelihood of typos. We need more controlled experiments

with longer tasks and intervention through non-remote manipu-

lation of the programming environment to better understand the

effects of PBPE in preventing typos.

We also found S3 intentionally used the synthesizer a lot despite

having to write complete specifications, which was confirmed post-

study: "I [actually] felt that coding [by hand] was easier." Since

we designed the tasks open-ended without providing algorithmic

guidance so that they resemble real problems, participants would

have to pick between entirely using PopPy, writing the code by

hand, and a mix of both to solve the tasks. Such lack of guidance

might cause them to use the synthesizer more (or less) than they

naturally would, which we found to be the case for S3.

6 FUTUREWORK AND CONCLUSION

We introduced PBPE and implemented it in PopPy, and discussed its

preliminary evaluation in a small pilot study. We did not reach con-

clusive results about how it compares to full output specifications.

However, we found that partial outputs are useful and widely used

when available, decrease the time spent providing specifications,

and do not increase confusion or frustration. These results lead

us to conclude that partial output specifications are a promising

direction, but that a larger user study is needed to better assess

their effects on the usability of synthesis tools.

From the pilot studies, we also identified improvements that

should be made to the study design. We saw that users’ self-reported

Python proficiency was not indicative of their performance on the

tasks. A future study can account for this by replacing the self-

reported question with an empirical measure, such as solving a

programming task without the tool and measuring completion time

and correctness. To avoid issues with remote control delays, PopPy

could be offered as an extension to Visual Studio Code rather than

a custom build to allow easy installation on participants machines.

This could also enable running larger long-term studies in more

natural settings, by asking participants to use PopPy in day-to-day

tasks rather than strict study sessions with pre-selected tasks.
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